Homotopy and Homology Vanishing Theorems and the Stability of Stochastic Flows.
We give a homotopy classification of nanophrases with at most four letters. It is an extension of the classification of nanophrases of length 2 with at most four letters, given by the author in a previous paper. As a corollary, we give a stable classification of ordered, pointed, oriented multi-component curves on surfaces with minimal crossing number less than or equal to 2 such that any equivalent curve has no simply closed curves in its components.
For closed oriented manifolds, we establish oriented homotopy invariance of higher signatures that come from the fundamental group of a large class of orientable -manifolds, including the “piecewise geometric” ones in the sense of Thurston. In particular, this class, that will be carefully described, is the class of all orientable -manifolds if the Thurston Geometrization Conjecture is true. In fact, for this type of groups, we show that the Baum-Connes Conjecture With Coefficients holds. The...
We formulate first results of our larger project based on first fixing some easily accessible invariants of topological spaces (typically the cup product structure in low dimensions) and then studying the variations of more complex invariants such as (the homotopy Lie algebra) or (the graded Lie algebra associated to the lower central series of the fundamental group). We prove basic rigidity results and give also an application in low-dimensional topology.