Displaying 401 – 420 of 5443

Showing per page

An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity

H.-Ch. Graf von Bothmer, Wolfgang Ebeling, Xavier Gómez-Mont (2008)

Annales de l’institut Fourier

Let ( V , 0 ) be a germ of a complete intersection variety in n + k , n > 0 , having an isolated singularity at 0 and X be the germ of a holomorphic vector field having an isolated zero at 0 and tangent to V . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of X is also isolated in the ambient space n + k we give a formula for the homological index in terms of local linear algebra.

An application of eigenfunctions of p -Laplacians to domain separation

Herbert Gajewski (2001)

Mathematica Bohemica

We are interested in algorithms for constructing surfaces Γ of possibly small measure that separate a given domain Ω into two regions of equal measure. Using the integral formula for the total gradient variation, we show that such separators can be constructed approximatively by means of sign changing eigenfunctions of the p -Laplacians, p 1 , under homogeneous Neumann boundary conditions. These eigenfunctions turn out to be limits of steepest descent methods applied to suitable norm quotients.

An application of the induction method of V. Pták to the study of regula falsi

Florian-Alexandru Potra (1981)

Aplikace matematiky

In this paper we introduce the notion of " p -dimensional rate of convergence" which generalizes the notion of rate of convergence introduced by V. Pták. Using this notion we give a generalization of the Induction Theorem of V. Pták, which may constitute a basis for the study of the iterative procedures of the form X n + 1 = F ( x n - p + 1 , X n - p + 2 , ... , x n ) , n = 0 , 1 , 2 , ... . As an illustration we apply these results to the study of the convergence of the secant method, obtaining sharp estimates for the errors at each step of the iterative procedure.

An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces

M. Poppenberg (1999)

Studia Mathematica

A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces C ( K ) , S ( N ) , B ( R N ) , D L 1 ( N ) , for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.

An arithmetic Hilbert–Samuel theorem for pointed stable curves

Gerard Freixas i Montplet (2012)

Journal of the European Mathematical Society

Let ( 𝒪 , , F ) be an arithmetic ring of Krull dimension at most 1 , S = Spec ( 𝒪 ) and ( 𝒳 S ; σ 1 , ... , σ n ) a pointed stable curve. Write 𝒰 = 𝒳 j σ j ( S ) . For every integer k > 0 , the invertible sheaf ω 𝒳 / S k + 1 ( k σ 1 + ... + k σ n ) inherits a singular hermitian structure from the hyperbolic metric on the Riemann surface 𝒰 . In this article we define a Quillen type metric · Q on the determinant line λ k + 1 = λ ω 𝒳 / S k + 1 ( k ...

An Arzela-Ascoli theorem for immersed submanifolds

Graham Smith (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

The classical Arzela-Ascoli theorem is a compactness result for families of functions depending on bounds on the derivatives of the functions, and is of invaluable use in many fields of mathematics. In this paper, inspired by a result of Corlette, we prove an analogous compactness result for families of immersed submanifolds which depends only on bounds on the derivatives of the second fundamental forms of these submanifolds. We then show how the result of Corlette may be obtained as an immediate...

Currently displaying 401 – 420 of 5443