Sur les fonctions d'un opérateur pseudo-différentiel elliptique
Grâce à une formule de Jensen en plusieurs variables, on définit les nombres de Lelong généralisés d’un courant positif fermé relativement à un poids logarithmiquement plurisousharmonique. Les propriétés d’invariance de ces nombres par rapport aux morphismes analytiques permettent d’encadrer précisément les nombres de Lelong d’une image directe en faisant intervenir certaines multiplicités du morphisme. Une théorie analogue peut être développée pour l’étude de la croissance à l’infini d’un courant....
La caustique d?un point sur une variété riemannienne est l?ensemble des points d?intersection des géodésiques infiniment voisins partant de ce point. Jacobi a remarqué, en utilisant un raisonnement topologique, que la caustique d?un point sur une surface convexe fermée doit avoir des points de rebroussement. Il a aussi annoncé (sans démonstration) que le nombre de ces points est quatre pour les caustiques sur les surfaces d?ellipsoïdes (Jacobi, 1964). Dans cette note j?essaie d?inclure les théorèmes...
On étudie, sur le modèle de la théorie des singularités d’applications différentiables, les singularités des formes différentielles extérieures sur une variété différentiable. Les invariants fondamentaux utilisés sont le rang et la classe (au sens de E. Cartan) d’une forme différentielle. On étudie leur comportement générique à l’aide des théorèmes de transversalité. Par exemple, l’ensemble des points d’une variété de dimension où la classe d’une forme de Pfaff est égale à est génériquement...
Le résultat principal de cet article est une formule explicite donnant le nombre de Milnor d’une singularité isolée d’intersection complète quasi-homogène d’une courbe de en fonction des degrés et des poids. Ce calcul effectué par des méthodes topologiques repose sur le théorème suivant : la fibre de Milnor d’une singularité isolée d’intersection complète quasi-homogène ne dépend que des degrés et des poids à difféomorphisme près. Une autre conséquence de ce théorème est l’existence d’une morsification...
Soit un germe en d’une forme de Pfaff, complètement intégrable () de classe ou analytique, dont 0 est un zéro algébriquement isolé La matrice est symétrique ; soit la forme quadratique correspondante. On montre dans ce travail :i) que possède une intégrale première formelle (i.e., , où et sont des séries formelles).ii) que, si est analytique et rang , possède une intégrale première analytique (i.e. , , ).iii) que, si est et si (indice ) , possède une intégrale...
À l’aide des estimations de Hörmander pour l’opérateur , on montre pour certains fermés de un résultat sur la nullité de la -cohomologie pour les formes de type à coefficients dans l’espace des fonctions différentiables au sens de Whitney.