The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
192
The aim of the article is to give a conceptual understanding of Kontsevich’s construction of the universal element of the cohomology of the coarse moduli space of smooth algebraic curves with given genus and punctures. In a first step the author presents a toy model of tree graphs coloured by an operad for which the graph complex and the universal cycle will be constructed. The universal cycle has coefficients in the operad for -algebras with trivial differential over the (dual) cobar construction...
In this note we prove some results in flat and differential -theory. The first one is a proof of the compatibility of the differential topological index and the flat topological index by a direct computation. The second one is the explicit isomorphisms between Bunke-Schick differential -theory and Freed-Lott differential -theory.
We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on -almost everywhere Fréchet differentiability of Lipschitz functions on (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at -almost every at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are -almost everywhere Fréchet differentiable....
This paper is about some geometric properties of the gluing of order in the category of Sikorski differential spaces, where is assumed to be an arbitrary natural number. Differential spaces are one of possible generalizations of the concept of an infinitely differentiable manifold. It is known that in many (very important) mathematical models, the manifold structure breaks down. Therefore it is important to introduce a more general concept. In this paper, in particular, the behaviour of order...
The paper begins with some general remarks which include the Mayer-Vietoris exact sequence, a covariant version of the Lichnerowicz-Poisson cohomology, and the definition of an associated Serre-Hochshild spectral sequence. Then we consider the regular case, and we discuss the Poisson cohomology by using a natural bigrading of the Lichnerowicz cochain complex. Furthermore, if the symplectic foliation of the Poisson manifold is either transversally Riemannian or transversally symplectic, the spectral...
A front is the projection on the plane of a Legendrian immersion of a circle in the space of the contact elements of that plane. I analyze the symmetries of a generic front with respect to the group generated by the involutions reversing the orientation of the plane, the orientation of the preimage circle and the coorientation of the contact plane.
Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A.
Currently displaying 101 –
120 of
192