Displaying 1421 – 1440 of 5443

Showing per page

Existence of solutions for some elliptic problems with critical Sobolev exponents.

Mario Zuluaga (1989)

Revista Matemática Iberoamericana

Let Ω be a bounded domain in Rn with n ≥ 3. In this paper we are concerned with the problem of finding u ∈ H01 (Ω) satisfying the nonlinear elliptic problemsΔu + |u|(n+2/n-2) + f(x) = 0  in Ω and u(x) = 0 on ∂Ω, andΔu + u + |u|(n+2/n-2) + f(x) = 0  in Ω and u(x) = 0 on ∂Ω, when of f ∈ L∞(Ω).

Existence of star-products on exact symplectic manifolds

Marc De Wilde, P. B. A. Lecomte (1985)

Annales de l'institut Fourier

It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.

Existence of three solutions to a double eigenvalue problem for the p-biharmonic equation

Lin Li, Shapour Heidarkhani (2012)

Annales Polonici Mathematici

Using a three critical points theorem and variational methods, we study the existence of at least three weak solutions of the Navier problem ⎧ Δ ( | Δ u | p 2 Δ u ) d i v ( | u | p 2 u ) = λ f ( x , u ) + μ g ( x , u ) in Ω, ⎨ ⎩u = Δu = 0 on ∂Ω, where Ω N (N ≥ 1) is a non-empty bounded open set with a sufficiently smooth boundary ∂Ω, λ > 0, μ > 0 and f,g: Ω × ℝ → ℝ are two L¹-Carathéodory functions.

Existence Results for a Fractional Boundary Value Problem via Critical Point Theory

A. Boucenna, Toufik Moussaoui (2015)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we consider the following boundary value problem D T - α ( D 0 + α ( D T - α ( D 0 + α u ( t ) ) ) ) = f ( t , u ( t ) ) , t [ 0 , T ] , u ( 0 ) = u ( T ) = 0 D T - α ( D 0 + α u ( 0 ) ) = D T - α ( D 0 + α u ( T ) ) = 0 , where 0 < α 1 and f : [ 0 , T ] × is a continuous function, D 0 + α , D T - α are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.

Explicit expression of Cartan’s connection for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere

Joël Merker, Masoud Sabzevari (2012)

Open Mathematics

We study effectively the Cartan geometry of Levi-nondegenerate C 6-smooth hypersurfaces M 3 in ℂ2. Notably, we present the so-called curvature function of a related Tanaka-type normal connection explicitly in terms of a graphing function for M, which is the initial, single available datum. Vanishing of this curvature function then characterizes explicitly the local biholomorphic equivalence of such M 3 ⊂ ℂ2 to the Heisenberg sphere ℍ3, such M’s being necessarily real analytic.

Currently displaying 1421 – 1440 of 5443