On foliations of differential spaces
Elements of the general theory of Lie-Cartan pseudogroups (including the intransitive case) are developed within the framework of infinitely prolonged systems of partial differential equations (diffieties) which makes it independent of any particular realizations by transformations of geometric object. Three axiomatic approaches, the concepts of essential invariant, subgroup, normal subgroup and factorgroups are discussed. The existence of a very special canonical composition series based on Cauchy...
The Conley index theory was introduced by Charles C. Conley (1933-1984) in [C1] and a major part of the foundations of the theory was developed in Ph. D. theses of his students, see for example [Ch, Ku, Mon]. The Conley index associates the homotopy type of some pointed space to an isolated invariant set of a flow, just as the fixed point index associates an integer number to an isolated set of fixed points of a continuous map. Examples of isolated invariant sets arise naturally in the critical...
We study finite -sets and their tensor product with Riemannian manifolds, and obtain results on isospectral quotients and covers. In particular, we show the following: If is a compact connected Riemannian manifold (or orbifold) whose fundamental group has a finite non-cyclic quotient, then has isospectral non-isometric covers.
We see how the first jet bundle of curves into affine space can be realized as a homogeneous space of the Galilean group. Cartan connections with this model are precisely the geometric structure of second-order ordinary differential equations under time-preserving transformations - sometimes called KCC-theory. With certain regularity conditions, we show that any such Cartan connection induces “laboratory” coordinate systems, and the geodesic equations in this coordinates form a system of second-order...
[For the entire collection see Zbl 0742.00067.]Let be the Lie algebra , and let be the universal enveloping algebra for . Let be the center of . The authors consider the chain of Lie algebras . Then is an associative algebra which is called the Gel’fand-Zetlin subalgebra of . A module is called a -module if , where the summation is over the space of characters of and , , . The authors describe several properties of - modules. For example, they prove that if for some ...
In this paper, we study the characterization of generalized -harmonic morphisms between Riemannian manifolds. We prove that a map between Riemannian manifolds is an -harmonic morphism if and only if it is a horizontally weakly conformal map satisfying some further conditions. We present new properties generalizing Fuglede-Ishihara characterization for harmonic morphisms ([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144], [Ishihara T., A...
In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let be subsets with finite Lebesgue measure. Then, for any sequence of -linearly independent polynomials in the polynomial ring there are real numbers , not all zero, such that the real affine variety simultaneously bisects each of subsets , . Then some its applications are studied.
The author previously studied with F. Ilosvay and B. Kis [Publ. Math. 42, 139-144 (1993; Zbl 0796.53022)] the diffeomorphisms between two Finsler spaces and which map the geodesics of to geodesics of (geodesic mappings).Now, he investigates the geodesic mappings between a Finsler space and a Riemannian space . The main result of this paper is as follows: if is of constant curvature and the mapping is a strongly geodesic mapping then or and .
We develop an algebraic version of Cartan’s method of equivalence or an analog of Tanaka prolongation for the (extrinsic) geometry of curves of flags of a vector space W with respect to the action of a subgroup G of GL(W). Under some natural assumptions on the subgroup G and on the flags, one can pass from the filtered objects to the corresponding graded objects and describe the construction of canonical bundles of moving frames for these curves in the language of pure linear algebra. The scope...