Euclidean distances on signed measures and application to Berry-Esséen theorems. (Distances euclidiennes sur les mesures signées et application à des théorèmes de Berry-Esséen.)
We prove quenched hydrodynamic limit under hyperbolic time scaling for bounded attractive particle systems on in random ergodic environment. Our result is a strong law of large numbers, that we illustrate with various examples.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form , . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form |x|α, α ∈ [1/2,1). In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
This paper is concerned with the problem of simulation of , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain : namely, we consider the case where the boundary is killing, or where it is instantaneously reflecting in an oblique direction. Given discretization times equally spaced on the interval , we propose new discretization schemes: they are fully implementable and provide a weak error of order under some conditions. The construction...
This paper is concerned with the problem of simulation of (Xt)0≤t≤T, the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D: namely, we consider the case where the boundary ∂D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [0,T], we propose new discretization schemes: they are fully implementable and provide a weak error of order N-1 under some conditions....
Let D be either a convex domain in or a domain satisfying the conditions (A) and (B) considered by Lions and Sznitman (1984) and Saisho (1987). We investigate convergence in law as well as in for the Euler and Euler-Peano schemes for stochastic differential equations in D with normal reflection at the boundary. The coefficients are measurable, continuous almost everywhere with respect to the Lebesgue measure, and the diffusion coefficient may degenerate on some subsets of the domain.
We study convergence in law for the Euler and Euler-Peano schemes for stochastic differential equations reflecting on the boundary of a general convex domain. We assume that the coefficients are measurable and continuous almost everywhere with respect to the Lebesgue measure. The proofs are based on new estimates of Krylov's type for the approximations considered.
We consider evaluating improper priors in a formal Bayes setting according to the consequences of their use. Let be a class of functions on the parameter space and consider estimating elements of under quadratic loss. If the formal Bayes estimator of every function in is admissible, then the prior is strongly admissible with respect to . Eaton’s method for establishing strong admissibility is based on studying the stability properties of a particular Markov chain associated with the inferential...
We consider special events of Borel sets with the aim to prove, that the set of the irrational numbers is an event of the Borel sets. The set of the natural numbers, the set of the integer numbers and the set of the rational numbers are countable, so we can use the literature [10] (pp. 78-81) as a basis for the similar construction of the proof. Next we prove, that different sets can construct the Borel sets [16] (pp. 9-10). Literature [16] (pp. 9-10) and [11] (pp. 11-12) gives an overview, that...