Generalized stochastic processes
This work introduces the class of generalized tempered stable processes which encompass variations on tempered stable processes that have been introduced in the field, including "modified tempered stable processes", "layered stable processes", and "Lamperti stable processes". Short and long time behavior of GTS Lévy processes is characterized and the absolute continuity of GTS processes with respect to the underlying stable processes is established. Series representations of GTS Lévy processes are...
MV-algebras can be treated as non-commutative generalizations of boolean algebras. The probability theory of MV-algebras was developed as a generalization of the boolean algebraic probability theory. For both theories the notions of state and observable were introduced by abstracting the properties of the Kolmogorov's probability measure and the classical random variable. Similarly, as in the case of the classical Kolmogorov's probability, the notion of independence is considered. In the framework...
The notion of a construction of a fuzzy preference structures is introduced. The properties of a certain class of generated fuzzy implications are studied. The main topic in this paper is investigation of the construction of the monotone generator triplet , which is the producer of fuzzy preference structures. Some properties of mentioned monotone generator triplet are investigated.
We prove that Brownian motion on an abstract Wiener space B generates a locally equicontinuous semigroup on equipped with the -topology introduced by L. Le Cam. Hence we obtain a “Laplace operator” as its infinitesimal generator. Using this Laplacian, we discuss Poisson’s equation and heat equation, and study its properties, especially the difference from the Gross Laplacian.
It is shown that for a typical continuous learning system defined on a compact convex subset of ℝⁿ the Hausdorff dimension of its invariant measure is equal to zero.
It is shown that the set of learning systems having a singular stationary distribution is generic in the family of all systems satisfying the average contractivity condition.