Approximation par des intégrales de Stieltjes-Lebesgue d’intégrales stochastiques relatives au mouvement brownien indexé par
We are interested in the approximation and simulation of solutions for the backward stochastic differential equations. We suggest two approximation schemes, and we study the induced error.
If a stochastic process can be approximated with a Wiener process with positive drift, then its maximum also can be approximated with a Wiener process with positive drift.
In the present paper, using a Picard type method of approximation, we investigate the global existence of mild solutions for a class of Ito type stochastic differential equations whose coefficients satisfy conditions more general than the Lipschitz and linear growth ones.
The aim of this paper is to present some ideas how to relax the notion of the optimal solution of the stochastic optimization problem. In the deterministic case, -minimal solutions and level-minimal solutions are considered as desired relaxations. We call them approximative solutions and we introduce some possibilities how to combine them with randomness. Relations among random versions of approximative solutions and their consistency are presented in this paper. No measurability is assumed, therefore,...
Problems related to the random approximation of convex bodies fall into the field of integral geometry and geometric probabilities. The aim of this paper is to give a survey of known results about the stochastic model that has received special attention in the literature and that can be described as follows:Let K be a d-dimensional convex body in Eucliden space Rd, d ≥ 2. Denote by Hn the convex hull of n independent random points X1, ..., Xn distributed identically and uniformly in the interior...
Various aspects of arbitrage on finite horizon continuous time markets using simple strategies consisting of a finite number of transactions are studied. Special attention is devoted to transactions without shortselling, in which we are not allowed to borrow assets. The markets without or with proportional transaction costs are considered. Necessary and sufficient conditions for absence of arbitrage are shown.
We consider markets with proportional transaction costs and shortsale restrictions. We give necessary and sufficient conditions for the absence of arbitrage and also estimate the super-replication price.
An example of a normal nonlinear continuous function of a normal random variable is given. Also the Cauchy case is considered.
While it is reasonable to assume that convex combinations on the level of random variables lead to a reduction of risk (diversification effect), this is no more true on the level of distributions. In the latter case, taking convex combinations corresponds to adding a risk factor. Hence, whereas asking for convexity of risk functions defined on random variables makes sense, convexity is not a good property to require on risk functions defined on distributions. In this paper we study the interplay...