Displaying 1201 – 1220 of 10046

Showing per page

Approximative solutions of stochastic optimization problems

Petr Lachout (2010)

Kybernetika

The aim of this paper is to present some ideas how to relax the notion of the optimal solution of the stochastic optimization problem. In the deterministic case, ε -minimal solutions and level-minimal solutions are considered as desired relaxations. We call them approximative solutions and we introduce some possibilities how to combine them with randomness. Relations among random versions of approximative solutions and their consistency are presented in this paper. No measurability is assumed, therefore,...

Aproximación aleatoria de cuerpos convexos.

Fernando Affentranger (1992)

Publicacions Matemàtiques

Problems related to the random approximation of convex bodies fall into the field of integral geometry and geometric probabilities. The aim of this paper is to give a survey of known results about the stochastic model that has received special attention in the literature and that can be described as follows:Let K be a d-dimensional convex body in Eucliden space Rd, d ≥ 2. Denote by Hn the convex hull of n independent random points X1, ..., Xn distributed identically and uniformly in the interior...

Arbitrage for simple strategies

Agnieszka Rygiel, Łukasz Stettner (2012)

Applicationes Mathematicae

Various aspects of arbitrage on finite horizon continuous time markets using simple strategies consisting of a finite number of transactions are studied. Special attention is devoted to transactions without shortselling, in which we are not allowed to borrow assets. The markets without or with proportional transaction costs are considered. Necessary and sufficient conditions for absence of arbitrage are shown.

Are law-invariant risk functions concave on distributions?

Beatrice Acciaio, Gregor Svindland (2013)

Dependence Modeling

While it is reasonable to assume that convex combinations on the level of random variables lead to a reduction of risk (diversification effect), this is no more true on the level of distributions. In the latter case, taking convex combinations corresponds to adding a risk factor. Hence, whereas asking for convexity of risk functions defined on random variables makes sense, convexity is not a good property to require on risk functions defined on distributions. In this paper we study the interplay...

Currently displaying 1201 – 1220 of 10046