Brownian motion, bridge excursion, and meander characterized by sampling at independent uniform times.
We generalize brownian motion on a riemannian manifold to the case of a family of metrics which depends on time. Such questions are natural for equations like the heat equation with respect to time dependent laplacians (inhomogeneous diffusions). In this paper we are in particular interested in the Ricci flow which provides an intrinsic family of time dependent metrics. We give a notion of parallel transport along this brownian motion, and establish a generalization of the Dohrn–Guerra or damped...
The brownian motion model introduced by Dyson [7] for the eigenvalues of unitary random matrices is interpreted as a system of interacting brownian particles on the circle with electrostatic inter-particles repulsion. The aim of this paper is to define the finite particle system in a general setting including collisions between particles. Then, we study the behaviour of this system when the number of particles goes to infinity (through the empirical measure process). We prove that a limiting...
The Brownian motion model introduced by Dyson [7] for the eigenvalues of unitary random matrices N x N is interpreted as a system of N interacting Brownian particles on the circle with electrostatic inter-particles repulsion. The aim of this paper is to define the finite particle system in a general setting including collisions between particles. Then, we study the behaviour of this system when the number of particles N goes to infinity (through the empirical measure process). We prove...
Limiting laws, as t→∞, for brownian motion penalised by the longest length of excursions up to t, or up to the last zero before t, or again, up to the first zero after t, are shown to exist, and are characterized.
The paper deals with three issues. First we show a sufficient condition for a cylindrical local martingale to be a stochastic integral with respect to a cylindrical Wiener process. Secondly, we state an infinite dimensional version of the martingale problem of Stroock and Varadhan, and finally we apply the results to show that a weak existence plus uniqueness in law for deterministic initial conditions for an abstract stochastic evolution equation in a Banach space implies the strong Markov property....
We study connections between Sobolev space solutions of the Dirichlet problem for semilinear second order elliptic equations in divergence form and solutions of backward stochastic differential equations with random terminal time.