Displaying 141 – 160 of 186

Showing per page

Global approximations for the γ-order Lognormal distribution

Thomas L. Toulias (2013)

Discussiones Mathematicae Probability and Statistics

A generalized form of the usual Lognormal distribution, denoted with γ , is introduced through the γ-order Normal distribution γ , with its p.d.f. defined into (0,+∞). The study of the c.d.f. of γ is focused on a heuristic method that provides global approximations with two anchor points, at zero and at infinity. Also evaluations are provided while certain bounds are obtained.

Global Poissonian behavior of the eigenvalues and localization centers of random operators in the localized phase

Frédéric Klopp (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

In the present note, we review some recent results on the spectral statistics of random operators in the localized phase obtained in [12]. For a general class of random operators, we show that the family of the unfolded eigenvalues in the localization region considered jointly with the associated localization centers is asymptotically ergodic. This can be considered as a generalization of [10]. The benefit of the present approach is that one can vary the scaling of the unfolded eigenvalues covariantly...

Goodness of fit tests with weights in the classes based on ( h , φ ) -divergences

Elena Landaburu, Leandro Pardo (2000)

Kybernetika

The aim of the paper is to present a test of goodness of fit with weigths in the classes based on weighted h , φ -divergences. This family of divergences generalizes in some sense the previous weighted divergences studied by Frank et al [frank] and Kapur [kapur]. The weighted h , φ -divergence between an empirical distribution and a fixed distribution is here investigated for large simple random samples, and the asymptotic distributions are shown to be either normal or equal to the distribution of a linear...

Goodness-of-fit test for long range dependent processes

Gilles Fay, Anne Philippe (2002)

ESAIM: Probability and Statistics

In this paper, we make use of the information measure introduced by Mokkadem (1997) for building a goodness-of-fit test for long-range dependent processes. Our test statistic is performed in the frequency domain and writes as a non linear functional of the normalized periodogram. We establish the asymptotic distribution of our statistic under the null hypothesis. Under specific alternative hypotheses, we prove that the power converges to one. The performance of our test procedure is illustrated...

Goodness-of-fit test for long range dependent processes

Gilles Fay, Anne Philippe (2010)

ESAIM: Probability and Statistics

In this paper, we make use of the information measure introduced by Mokkadem (1997) for building a goodness-of-fit test for long-range dependent processes. Our test statistic is performed in the frequency domain and writes as a non linear functional of the normalized periodogram. We establish the asymptotic distribution of our statistic under the null hypothesis. Under specific alternative hypotheses, we prove that the power converges to one. The performance of our test procedure is illustrated...

Goodness-of-fit tests in long-range dependent processes under fixed alternatives

Holger Dette, Kemal Sen (2013)

ESAIM: Probability and Statistics

In a recent paper Fay and Philippe [ESAIM: PS 6 (2002) 239–258] proposed a goodness-of-fit test for long-range dependent processes which uses the logarithmic contrast as information measure. These authors established asymptotic normality under the null hypothesis and local alternatives. In the present note we extend these results and show that the corresponding test statistic is also normally distributed under fixed alternatives.

Gradient estimates in parabolic problems with unbounded coefficients

M. Bertoldi, S. Fornaro (2004)

Studia Mathematica

We study, with purely analytic tools, existence, uniqueness and gradient estimates of the solutions to the Neumann problems associated with a second order elliptic operator with unbounded coefficients in spaces of continuous functions in an unbounded open set Ω in N .

Gradient flows of the entropy for jump processes

Matthias Erbar (2014)

Annales de l'I.H.P. Probabilités et statistiques

We introduce a new transport distance between probability measures on d that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is...

Currently displaying 141 – 160 of 186