Displaying 121 – 140 of 186

Showing per page

Geometry of Lipschitz percolation

G. R. Grimmett, A. E. Holroyd (2012)

Annales de l'I.H.P. Probabilités et statistiques

We prove several facts concerning Lipschitz percolation, including the following. The critical probability pL for the existence of an open Lipschitz surface in site percolation on ℤd with d ≥ 2 satisfies the improved bound pL ≤ 1 − 1/[8(d − 1)]. Whenever p > pL, the height of the lowest Lipschitz surface above the origin has an exponentially decaying tail. For p sufficiently close to 1, the connected regions of ℤd−1 above which the surface has height 2 or more exhibit stretched-exponential...

Giant component and vacant set for random walk on a discrete torus

Itai Benjamini, Alain-Sol Sznitman (2008)

Journal of the European Mathematical Society

We consider random walk on a discrete torus E of side-length N , in sufficiently high dimension d . We investigate the percolative properties of the vacant set corresponding to the collection of sites which have not been visited by the walk up to time u N d . We show that when u is chosen small, as N tends to infinity, there is with overwhelming probability a unique connected component in the vacant set which contains segments of length const log N . Moreover, this connected component occupies a non-degenerate...

Giant vacant component left by a random walk in a random d-regular graph

Jiří Černý, Augusto Teixeira, David Windisch (2011)

Annales de l'I.H.P. Probabilités et statistiques

We study the trajectory of a simple random walk on a d-regular graph with d ≥ 3 and locally tree-like structure as the number n of vertices grows. Examples of such graphs include random d-regular graphs and large girth expanders. For these graphs, we investigate percolative properties of the set of vertices not visited by the walk until time un, where u > 0 is a fixed positive parameter. We show that this so-called vacant set exhibits a phase transition in u in the following sense: there...

Gibbs measures in a markovian context and dimension

L. Farhane, G. Michon (2001)

Colloquium Mathematicae

The main goal is to use Gibbs measures in a markovian matrices context and in a more general context, to compute the Hausdorff dimension of subsets of [0, 1[ and [0, 1[². We introduce a parameter t which could be interpreted within thermodynamic framework as the variable conjugate to energy. In some particular cases we recover the Shannon-McMillan-Breiman and Eggleston theorems. Our proofs are deeply rooted in the properties of non-negative irreducible matrices and large deviations techniques as...

Gibbs–non-Gibbs properties for evolving Ising models on trees

Aernout C. D. van Enter, Victor N. Ermolaev, Giulio Iacobelli, Christof Külske (2012)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we study homogeneous Gibbs measures on a Cayley tree, subjected to an infinite-temperature Glauber evolution, and consider their (non-)Gibbsian properties. We show that the intermediate Gibbs state (which in zero field is the free-boundary-condition Gibbs state) behaves differently from the plus and the minus state. E.g. at large times, all configurations are bad for the intermediate state, whereas the plus configuration never is bad for the plus state. Moreover, we show that for each...

Currently displaying 121 – 140 of 186