Displaying 1601 – 1620 of 10046

Showing per page

Caracterización axiomática para la varianza.

María Angeles Gil Alvarez (1983)

Trabajos de Estadística e Investigación Operativa

En el artículo ([7]), M. Martín propone dos caracterizaciones axiomáticas para la varianza sugiriendo la posibilidad de caracterizarla de forma más intuitiva como una medida de incertidumbre que tenga en cuenta el soporte de la probabilidad, además del valor de ésta.El presente trabajo está dedicado a establecer una caracterización en tal sentido, siguiendo la línea de la axiomática de D. K. Faddeyew para la entropía de Shannon y de la axiomática propuesta en ([3]) para la medida definida en ([2]).Queremos...

Carthaginian enlargement of filtrations

Giorgia Callegaro, Monique Jeanblanc, Behnaz Zargari (2013)

ESAIM: Probability and Statistics

This work is concerned with the theory of initial and progressive enlargements of a reference filtration 𝔽 F with a random timeτ. We provide, under an equivalence assumption, slightly stronger than the absolute continuity assumption of Jacod, alternative proofs to results concerning canonical decomposition of an 𝔽 F -martingale in the enlarged filtrations. Also, we address martingales’ characterization in the enlarged filtrations in terms of martingales in the reference filtration, as well as predictable...

Cavity method in the spherical SK model

Dmitry Panchenko (2009)

Annales de l'I.H.P. Probabilités et statistiques

We develop a cavity method for the spherical Sherrington–Kirkpatrick model at high temperature and small external field. As one application we compute the limit of the covariance matrix for fluctuations of the overlap and magnetization.

Central and non-central limit theorems for weighted power variations of fractional brownian motion

Ivan Nourdin, David Nualart, Ciprian A. Tudor (2010)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we prove some central and non-central limit theorems for renormalized weighted power variations of order q≥2 of the fractional brownian motion with Hurst parameter H∈(0, 1), where q is an integer. The central limit holds for 1/2q<H≤1−1/2q, the limit being a conditionally gaussian distribution. If H<1/2q we show the convergence in L2 to a limit which only depends on the fractional brownian motion, and if H>1−1/2q we show the convergence in L2 to a stochastic integral...

Central extensions and stochastic processes associated with the Lie algebra of the renormalized higher powers of white noise

Luigi Accardi, Andreas Boukas (2010)

Banach Center Publications

In the first part of the paper we discuss possible definitions of Fock representation of the *-Lie algebra of the Renormalized Higher Powers of White Noise (RHPWN). We propose one definition that avoids the no-go theorems and we show that the vacuum distribution of the analogue of the field operator for the n-th renormalized power of WN defines a continuous binomial process. In the second part of the paper we present without proof our recent results on the central extensions of RHPWN, its subalgebras...

Currently displaying 1601 – 1620 of 10046