The search session has expired. Please query the service again.
Displaying 41 –
60 of
369
The approach introduced in Janžura [Janzura 1997] is further developed and the asymptotic Rényi distances are studied mostly from the point of their monotonicity properties. The results are applied to the problems of statistical inference.
In his 2003 paper, Varadhan proves the averaged large deviation principle for the mean velocity of a particle taking a nearest-neighbor random walk in a uniformly elliptic i.i.d. environment on ℤd with d≥1, and gives a variational formula for the corresponding rate function Ia. Under Sznitman’s transience condition (T), we show that Ia is strictly convex and analytic on a non-empty open set , and that the true velocity of the particle is an element (resp. in the boundary) of when the walk is non-nestling...
We asymptotically estimate from above the expected Betti numbers of random real hypersurfaces in smooth real projective manifolds. Our upper bounds grow as the square root of the degree of the hypersurfaces as the latter grows to infinity, with a coefficient involving the Kählerian volume of the real locus of the manifold as well as the expected determinant of random real symmetric matrices of given index. In particular, for large dimensions, these coefficients get exponentially small away from...
For almost all infinite binary sequences of Bernoulli trials the frequency of blocks of length in the first terms tends asymptotically to the probability of the blocks, if increases like (for ) where tends to . This generalizes a result due to P. Flajolet, P. Kirschenhofer and R.F. Tichy concerning the case .
This paper studies limit theorems for Markov chains with general state space under conditions which imply subgeometric ergodicity. We obtain a central limit theorem and moderate deviation principles for additive not necessarily bounded functional of the Markov chains under drift and minorization conditions which are weaker than the Foster–Lyapunov conditions. The regeneration-split chain method and a precise control of the modulated moment of the hitting time to small sets are employed in the proof....
In this paper we derive various bounds on tail probabilities of distributions for which the generated exponential family has a linear or quadratic variance function. The main result is an inequality relating the signed log-likelihood of a negative binomial distribution with the signed log-likelihood of a Gamma distribution. This bound leads to a new bound on the signed log-likelihood of a binomial distribution compared with a Poisson distribution that can be used to prove an intersection property...
In this paper, we develop bounds on the distribution function of the empirical mean for general ergodic Markov processes having a spectral gap. Our approach is based on the perturbation theory for linear operators, following the technique introduced by Gillman.
In this paper, we develop bounds on the distribution function of the empirical
mean for general ergodic Markov processes having a spectral gap. Our approach is
based on the perturbation theory for linear operators, following the technique
introduced by Gillman.
We study the rate of concentration of a Brownian bridge in time one around the
corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative
sectional curvature, when the distance between the two extremities tends to infinity.
This improves on previous results by A. Eberle, and one of us . Along the way, we derive
a new asymptotic estimate for the logarithmic derivative of the heat kernel on such
manifolds, in bounded time and with one space parameter...
In this paper, we prove a conditional principle of Gibbs type for random weighted measures of the form , being a sequence of i.i.d. real random variables. Our work extends the preceding results of Gamboa and Gassiat (1997), in allowing to consider thin constraints. Transportation-like ideas are used in the proof.
In this paper, we prove a conditional principle of Gibbs type for
random weighted measures of the form
, ((Zi)i being a
sequence of i.i.d. real random variables. Our work extends the
preceding results of Gamboa and Gassiat (1997), in allowing to consider thin
constraints. Transportation-like ideas are used in the proof.
Currently displaying 41 –
60 of
369