Displaying 141 – 160 of 408

Showing per page

Identities in law between quadratic functionals of bivariate Gaussian processes, through Fubini theorems and symmetric projections

Giovanni Peccati, Marc Yor (2006)

Banach Center Publications

We present three new identities in law for quadratic functionals of conditioned bivariate Gaussian processes. In particular, our results provide a two-parameter generalization of a celebrated identity in law, involving the path variance of a Brownian bridge, due to Watson (1961). The proof is based on ideas from a recent note by J.-R. Pycke (2005) and on the stochastic Fubini theorem for general Gaussian measures proved in Deheuvels et al. (2004).

Images of Gaussian random fields: Salem sets and interior points

Narn-Rueih Shieh, Yimin Xiao (2006)

Studia Mathematica

Let X = X ( t ) , t N be a Gaussian random field in d with stationary increments. For any Borel set E N , we provide sufficient conditions for the image X(E) to be a Salem set or to have interior points by studying the asymptotic properties of the Fourier transform of the occupation measure of X and the continuity of the local times of X on E, respectively. Our results extend and improve the previous theorems of Pitt [24] and Kahane [12,13] for fractional Brownian motion.

Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles

Bernard Maurey (2003/2004)

Séminaire Bourbaki

La théorie des corps convexes a commencé à la fin du xixe siècle avec l’inégalité de Brunn, généralisée ensuite sous la forme de l’inégalité de Brunn-Minkowski-Lusternik, qui s’applique à des ensembles non convexes. Ce thème a depuis longtemps des contacts avec les problèmes isopérimétriques et avec des inégalités d’Analyse telle que les plongements de Sobolev. On développera quelques aspects plus récents des inégalités géométriques, dont certains sont liés à la technique du transport de mesure,...

Invariance principle, multifractional gaussian processes and long-range dependence

Serge Cohen, Renaud Marty (2008)

Annales de l'I.H.P. Probabilités et statistiques

This paper is devoted to establish an invariance principle where the limit process is a multifractional gaussian process with a multifractional function which takes its values in (1/2, 1). Some properties, such as regularity and local self-similarity of this process are studied. Moreover the limit process is compared to the multifractional brownian motion.

Joint continuity of the local times of fractional brownian sheets

Antoine Ayache, Dongsheng Wu, Yimin Xiao (2008)

Annales de l'I.H.P. Probabilités et statistiques

Let BH={BH(t), t∈ℝ+N} be an (N, d)-fractional brownian sheet with index H=(H1, …, HN)∈(0, 1)N defined by BH(t)=(BH1(t), …, BHd(t)) (t∈ℝ+N), where BH1, …, BHd are independent copies of a real-valued fractional brownian sheet B0H. We prove that if d<∑ℓ=1NHℓ−1, then the local times of BH are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields124 (2002)). We also establish sharp local and global Hölder conditions for the local times of BH. These results...

Karhunen-Loève expansions of α-Wiener bridges

Mátyás Barczy, Endre Iglói (2011)

Open Mathematics

We study Karhunen-Loève expansions of the process(X t(α))t∈[0,T) given by the stochastic differential equation d X t ( α ) = - α T - t X t ( α ) d t + d B t , t [ 0 , T ) , with the initial condition X 0(α) = 0, where α > 0, T ∈ (0, ∞), and (B t)t≥0 is a standard Wiener process. This process is called an α-Wiener bridge or a scaled Brownian bridge, and in the special case of α = 1 the usual Wiener bridge. We present weighted and unweighted Karhunen-Loève expansions of X (α). As applications, we calculate the Laplace transform and the distribution function...

Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's

Michal Vyoral (2005)

Applications of Mathematics

We consider a stochastic process X t x which solves an equation d X t x = A X t x d t + Φ d B t H , X 0 x = x where A and Φ are real matrices and B H is a fractional Brownian motion with Hurst parameter H ( 1 / 2 , 1 ) . The Kolmogorov backward equation for the function u ( t , x ) = 𝔼 f ( X t x ) is derived and exponential convergence of probability distributions of solutions to the limit measure is established.

Currently displaying 141 – 160 of 408