Displaying 121 – 140 of 654

Showing per page

On eliminating transformations for nuisance parameters in multivariate linear model

Pavla Kunderová (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The multivariate linear model, in which the matrix of the first order parameters is divided into two matrices: to the matrix of the useful parameters and to the matrix of the nuisance parameters, is considered. We examine eliminating transformations which eliminate the nuisance parameters without loss of information on the useful parameters and on the variance components.

On EM algorithms and their proximal generalizations

Stéphane Chrétien, Alfred O. Hero (2008)

ESAIM: Probability and Statistics

In this paper, we analyze the celebrated EM algorithm from the point of view of proximal point algorithms. More precisely, we study a new type of generalization of the EM procedure introduced in [Chretien and Hero (1998)] and called Kullback-proximal algorithms. The proximal framework allows us to prove new results concerning the cluster points. An essential contribution is a detailed analysis of the case where some cluster points lie on the boundary of the parameter space.

On entropies for random partitions of the unit segment

Milena Bieniek, Dominik Szynal (2008)

Kybernetika

We prove the complete convergence of Shannon’s, paired, genetic and α-entropy for random partitions of the unit segment. We also derive exact expressions for expectations and variances of the above entropies using special functions.

On equivalence and bioequivalence testing.

Jordi Ocaña, M. Pilar Sánchez O., Álex Sánchez, Josep Lluís Carrasco (2008)

SORT

Equivalence testing is the natural approach to many statistical problems. First, its main application, bioequivalence testing, is reviewed. The basic concepts of bioequivalence testing (2×2 crossover designs, TOST, interval inclusion principle, etc.) and its problems (TOST biased character, the carryover problem, etc.) are considered. Next, equivalence testing is discussed more generally. Some applications and methods are reviewed and the relation of equivalence testing and distance-based inference...

On equivalence problem in linear regression models. I. BLUE of the mean value

Gejza Wimmer (1980)

Aplikace matematiky

There exist many different ways of determining the best linear unbiased estimation of regression coefficients in general regression model. In Part I of this article it is shown that all these ways are numerically equivalent almost everyvhere. In Part II conditions are considered under which all the unbiased estimations of the unknown covariance matrix scalar factor are numerically equivalent almost everywhere.

On equivalence problem in linear regression models. II. Unbiased estimation of the covariance matrix scalar factor

Gejza Wimmer (1980)

Aplikace matematiky

There exist many different ways of determining the best linear unbiased estimation of regression coefficients in general regression model. In Part I of this article it is shown that all these ways are numerically equivalent almost everyvhere. In Part II conditions are considered under which all the unbiased estimations of the unknown covariance matrix scalar factor are numerically equivalent almost everywhere.

Currently displaying 121 – 140 of 654