The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 281 –
300 of
386
The LISDLG process denoted by J(t) is defined in Iglói and Terdik [ESAIM: PS7 (2003) 23–86] by a
functional limit theorem as the limit of ISDLG processes. This paper gives a
more general limit representation of J(t). It is shown that process J(t)
has its own renormalization group and that J(t) can be represented as the
limit process of the renormalization operator flow applied to the elements of
some set of stochastic processes. The latter set consists of IGSDLG processes
which are generalizations...
The LISDLG process denoted by is defined in Iglói and Terdik [ESAIM: PS 7 (2003) 23–86] by a functional limit theorem as the limit of ISDLG processes. This paper gives a more general limit representation of . It is shown that process has its own renormalization group and that can be represented as the limit process of the renormalization operator flow applied to the elements of some set of stochastic processes. The latter set consists of IGSDLG processes which are generalizations of the ISDLG...
The robust recursive algorithm for the parameter estimation and the volatility prediction in GARCH models is suggested. It seems to be useful for various financial time series, in particular for (high-frequency) log returns contaminated by additive outliers. The proposed procedure can be effective in the risk control and regulation when the prediction of volatility is the main concern since it is capable to distinguish and correct outlaid bursts of volatility. This conclusion is demonstrated by...
The first-order autoregressive model with uniform innovations is considered. In this paper, we study the bias-robustness and MSE-robustness of modified maximum likelihood estimator of parameter of the model against departures from distribution of white noise. We used the generalized Beta distribution to describe these departures.
Popular exponential smoothing methods dealt originally only with equally spaced observations. When time series contains gaps, smoothing constants have to be adjusted. Cipra et al., following Wright’s approach of irregularly spaced observations, have suggested ad hoc modification of smoothing constants for the Holt-Winters smoothing method. In this article the fact that the underlying model of the Holt-Winters method is a certain seasonal ARIMA is used. Minimum mean square error smoothing constants...
We consider multidimensional tree-based models of arbitrage-free and path-independent security markets. We assume that no riskless investment exists. Contingent claims pricing and hedging problems in such a market are studied.
Supongamos que yi = ζiT β + m(ti) + εi, i = 1, ..., n, donde el vector (p x 1) β y la función m(·) son desconocidos, y los errores εi provienen de un proceso autorregresivo de orden uno (AR(1)) estacionario. Discutimos aquí el problema de la selección del parámetro ventana de un estimador tipo núcleo de la función m(·) basado en un estimador Generalizado de Mínimos Cuadrados de β. Obtenemos la expresión asintótica de una ventana óptima y proponemos un método para estimarla, de modo que dé lugar...
In this work, we consider the general linear model or its variants with the ordinary least squares, generalised least squares or restricted least squares estimators of the regression coefficients and variance. We propose a newly unified set of definitions for local sensitivity for both situations, one for the estimators of the regression coefficients, and the other for the estimators of the variance. Based on these definitions, we present the estimators’ sensitivity results.We include brief remarks...
This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process,...
We consider a fixed-design regression model with errors which form a Borel measurable function of a long-range dependent moving average process. We introduce an artificial randomization of grid points at which observations are taken in order to diminish the impact of strong dependence. We show that the Priestley-Chao kernel estimator of the regression fuction exhibits a dichotomous asymptotic behaviour depending on the amount of smoothing employed. Moreover, the resulting estimator is shown to exhibit...
En este trabajo se demuestra cómo describir un modelo ARIMA de series temporales como suma de una tendencia a largo plazo, un componente estacional y un componente transitorio. Esta descomposición se obtiene a partir de la función de predicción del modelo, y su uso permite apreciar aspectos poco estudiados de los modelos ARIMA.
Este trabajo presenta un procedimiento para hacer robusto el algoritmo recursivo de Plackett-Kalman para el modelo lineal, incorporándole medidas diagnósticas que indiquen la influencia potencial y real de cada nueva observación en los parámetros del modelo. Se describe cómo calcular recursivamente el estadístico D2 de Cook, la distancia de Mahalanobis de cada nueva observación al centro de gravedad de la ya incluidas, y un contraste, basado en los residuos recursivos, de que la nueva observación...
Currently displaying 281 –
300 of
386