On error estimation for the pseudosolution of an inconsistent linear system
We present the method for determination of phycobilisomes diffusivity (diffusion coefficient ) on thylakoid membrane from fluorescence recovery after photobleaching (FRAP) experiments. This was usually done by analytical models consisting mainly of a simple curve fitting procedure. However, analytical models need some unrealistic conditions to be supposed. Our method, based on finite difference approximation of the process governed by the Fickian diffusion equation and on the minimization of an...
A method of estimation of intrinsic volume densities for stationary random closed sets in based on estimating volumes of tiny collars has been introduced in T. Mrkvička and J. Rataj, On estimation of intrinsic volume densities of stationary random closed sets, Stoch. Proc. Appl. 118 (2008), 2, 213-231. In this note, a stronger asymptotic consistency is proved in dimension 2. The implementation of the method is discussed in detail. An important step is the determination of dilation radii in the...
Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations.
The subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical...
We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution . We show that the Galerkin approximation of based on the so-called biharmonic finite elements is independent of the values of in the interior of any subelement.
In this article, we deal with the Boundary Value Problem (BVP) for linear ordinary differential equations, the coefficients and the boundary values of which are constant intervals. To solve this kind of interval BVP, we implement an approach that differs from commonly used ones. With this approach, the interval BVP is interpreted as a family of classical (real) BVPs. The set (bunch) of solutions of all these real BVPs we define to be the solution of the interval BVP. Therefore, the novelty of the...
The paper concerns the existence of bounded weak solutions of a anonlinear diffusion equation with nonhomogeneous mixed boundary conditions.
We consider FE-grid optimization in elliptic unilateral boundary value problems. The criterion used in grid optimization is the total potential energy of the system. It is shown that minimization of this cost functional means a decrease of the discretization error or a better approximation of the unilateral boundary conditions. Design sensitivity analysis is given with respect to the movement of nodal points. Numerical results for the Dirichlet-Signorini problem for the Laplace equation and the...
In this paper the fluid-structure interaction problem is studied on a simplified model of the human vocal fold. The problem is mathematically described and the arbitrary Lagrangian-Eulerian method is applied in order to treat the time dependent computational domain. The viscous incompressible fluid flow and linear elasticity models are considered. The fluid flow and the motion of elastic body is approximated with the aid of finite element method. An attention is paid to the applied stabilization...
This paper focuses on mathematical modeling and finite element simulation of fluid-structure interaction problems. A simplified problem of two-dimensional incompressible fluid flow interacting with a rigid structure, whose motion is described with one degree of freedom, is considered. The problem is mathematically described and numerically approximated using the finite element method. Two possibilities, namely Taylor-Hood and Scott-Vogelius elements are presented and implemented. Finally, numerical...