On Finite Element Approximations to Time-Dependent Problems.
We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is...
We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments with...
We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments...
In practice, input data entering a state problem are almost always uncertain to some extent. Thus it is natural to consider a set of admissible input data instead of a fixed and unique input. The worst scenario method takes into account all states generated by and maximizes a functional criterion reflecting a particular feature of the state solution, as local stress, displacement, or temperature, for instance. An increase in the criterion value indicates a deterioration in the featured quantity....
In this paper linear difference equations with several independent variables are considered, whose solutions are functions defined on sets of -dimensional vectors with integer coordinates. These equations could be called partial difference equations. Existence and uniqueness theorems for these equations are formulated and proved, and interconnections of such results with the theory of linear multidimensional digital systems are investigated. Numerous examples show essential differences of the results...
The methods of the transfer of conditions are generalized so that they also cover the direct methods leading to the diagonalization of the original matrix of a system with a band matrix. Part 3 is devoted to the numerical stability of methods of the transfer of conditions described in author's previous paper. Finally, it is shown how to obtain a particular method by the choice parameters of the general algorithm.