Displaying 261 – 280 of 499

Showing per page

Numerical behavior of the method of projection onto an acute cone with level control in convex minimization

Robert Dylewski (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We present the numerical behavior of a projection method for convex minimization problems which was studied by Cegielski [1]. The method is a modification of the Polyak subgradient projection method [6] and of variable target value subgradient method of Kim, Ahn and Cho [2]. In each iteration of the method an obtuse cone is constructed. The obtuse cone is generated by a linearly independent system of subgradients. The next approximation of a solution is the projection onto a translated acute cone...

Numerical boundary layers for hyperbolic systems in 1-D

Claire Chainais-Hillairet, Emmanuel Grenier (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.

Numerical boundary layers for hyperbolic systems in 1-D

Claire Chainais-Hillairet, Emmanuel Grenier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039–1064; Pego and Quintero, Physica D 132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations16 (2003) 1039–1064; Pego and Quintero, Physica D132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Currently displaying 261 – 280 of 499