Displaying 261 – 280 of 543

Showing per page

The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems

Edwige Godlewski, Kim-Claire Le Thanh, Pierre-Arnaud Raviart (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We...

The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems

Edwige Godlewski, Kim-Claire Le Thanh, Pierre-Arnaud Raviart (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem....

The numerical solution of boundary-value problems for differential equations with state dependent deviating arguments

Vernon L. Bakke, Zdzisław Jackiewicz (1989)

Aplikace matematiky

A numerical method for the solution of a second order boundary value problem for differential equation with state dependent deviating argument is studied. Second-order convergence is established and a theorem about the asymptotic expansion of global discretization error is given. This theorem makes it possible to improve the accuracy of the numerical solution by using Richardson extrapolation which results in a convergent method of order three. This is in contrast to boundary value problems for...

The numerical solution of compressible flows in time dependent domains

Kučera, Václav, Česenek, Jan (2008)

Programs and Algorithms of Numerical Mathematics

This work is concerned with the numerical solution of inviscid compressible fluid flow in moving domains. Specifically, we assume that the boundary part of the domain (impermeable walls) are time dependent. We consider the Euler equations, which describe the movement of inviscid compressible fluids. We present two formulations of the Euler equations in the ALE (Arbitrary Lagrangian-Eulerian) form. These two formulations are discretized in space by the discontinuous Galerkin method. We apply a semi-implicit linearization...

Currently displaying 261 – 280 of 543