Displaying 301 – 320 of 1113

Showing per page

On monotone and Schwarz alternating methods for nonlinear elliptic PDEs

Shiu-Hong Lui (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. In this paper, proofs of convergence of some Schwarz alternating methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method...

On Monotone and Schwarz Alternating Methods for Nonlinear Elliptic PDEs

Shiu-Hong Lui (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. In this paper, proofs of convergence of some Schwarz alternating methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method...

On multi-parameter error expansions in finite difference methods for linear Dirichlet problems

Ta Van Dinh (1987)

Aplikace matematiky

The paper is concerned with the finite difference approximation of the Dirichlet problem for a second order elliptic partial differential equation in an n -dimensional domain. Considering the simplest finite difference scheme and assuming a sufficient smoothness of the domain, coefficients of the equation, right-hand part, and boundary condition, the author develops a general error expansion formula in which the mesh sizes of an ( n -dimensional) rectangular grid in the directions of the individual...

On multipoint constraints in FETI methods

Pavla Hrušková, Zdeněk Dostál, Oldřich Vlach, Petr Vodstrčil (2025)

Applications of Mathematics

FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners' variables...

Currently displaying 301 – 320 of 1113