On Some Classes of Variationally Derived Quasi-Newton Methods for Systems of Nonlinear Algebraic Equations.
Numerical simulations of time-dependent behaviour of advances structures need the analysis of systems of partial differential equations of hyperbolic type, whose semi-discretization, using the Fourier multiplicative decomposition together with the finite element or similar techniques, leads to large sparse systems of ordinary differential equations. Effective and robust methods for numerical evaluation of their solutions in particular time steps are required; thus still new computational schemes...
We consider the accuracy of two finite difference schemes proposed recently in [Roy S., Vasudeva Murthy A.S., Kudenatti R.B., A numerical method for the hyperbolic-heat conduction equation based on multiple scale technique, Appl. Numer. Math., 2009, 59(6), 1419–1430], and [Mickens R.E., Jordan P.M., A positivity-preserving nonstandard finite difference scheme for the damped wave equation, Numer. Methods Partial Differential Equations, 2004, 20(5), 639–649] to solve an initial-boundary value problem...
In this paper, we propose implicit and semi-implicit in time finite volume schemes for the barotropic Euler equations (hence, as a particular case, for the shallow water equations) and for the full Euler equations, based on staggered discretizations. For structured meshes, we use the MAC finite volume scheme, and, for general mixed quadrangular/hexahedral and simplicial meshes, we use the discrete unknowns of the Rannacher−Turek or Crouzeix−Raviart finite elements. We first show that a solution...
A modification of the Nekrassov method for finding a solution of a linear system of algebraic equations is given and a numerical example is shown.* This paper is partly supported by project IS–M–4 of Department for Scientific Research, Paisii Hilendarski University of Plovdiv.
We investigate quadrature rules with Laplace end corrections that depend on a parameter β. Specific values of β yield sixth order rules. We apply our results to approximating the sum of slowly converging series s = Σi=1∞ f(i + 1/2) where f ∈ C 6 with its sixth derivative of constant sign on [m, ∞) and ∫ m∞ f(x)dx is known for m ∈ ℕ. Several examples show the efficiency of this method. This paper continues the results from [Solak W., Szydełko Z., Quadrature rules with Gregory-Laplace end corrections,...