Displaying 441 – 460 of 1111

Showing per page

On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes

Michael Dumbser, Claus-dieter Munz (2007)

International Journal of Applied Mathematics and Computer Science

This article is devoted to the discretization of source terms and boundary conditions using discontinuous Galerkin schemes with an arbitrary high order of accuracy in space and time for the solution of hyperbolic conservation laws on unstructured triangular meshes. The building block of the method is a particular numerical flux function at the element interfaces based on the solution of Generalized Riemann Problems (GRPs) with piecewise polynomial initial data. The solution of the generalized Riemann...

On Spectral Stability of Solitary Waves of Nonlinear Dirac Equation in 1D⋆⋆

G. Berkolaiko, A. Comech (2012)

Mathematical Modelling of Natural Phenomena

We study the spectral stability of solitary wave solutions to the nonlinear Dirac equation in one dimension. We focus on the Dirac equation with cubic nonlinearity, known as the Soler model in (1+1) dimensions and also as the massive Gross-Neveu model. Presented numerical computations of the spectrum of linearization at a solitary wave show that the solitary waves are spectrally stable. We corroborate our results by finding explicit expressions for...

On stability of the P n mod / P n element for incompressible flow problems

Petr Knobloch (2006)

Applications of Mathematics

It is well known that finite element spaces used for approximating the velocity and the pressure in an incompressible flow problem have to be stable in the sense of the inf-sup condition of Babuška and Brezzi if a stabilization of the incompressibility constraint is not applied. In this paper we consider a recently introduced class of triangular nonconforming finite elements of n th order accuracy in the energy norm called P n elements. For n 3 we show that the stability condition holds if the velocity...

On stable least squares solution to the system of linear inequalities

Evald Übi (2007)

Open Mathematics

The system of inequalities is transformed to the least squares problem on the positive ortant. This problem is solved using orthogonal transformations which are memorized as products. Author’s previous paper presented a method where at each step all the coefficients of the system were transformed. This paper describes a method applicable also to large matrices. Like in revised simplex method, in this method an auxiliary matrix is used for the computations. The algorithm is suitable for unstable...

On strongly stable approximations.

F. Arandiga, V. Caselles (1994)

Revista Matemática de la Universidad Complutense de Madrid

In this paper we prove that the convergence of (T - Tn)Tn-k to zero in operator norm (plus some technical conditions) is a sufficient condition for Tn to be a strongly stable approximation to T, thus extending some previous results existing in the literature.

On suitable inlet boundary conditions for fluid-structure interaction problems in a channel

Jan Valášek, Petr Sváček, Jaromír Horáček (2019)

Applications of Mathematics

We are interested in the numerical solution of a two-dimensional fluid-structure interaction problem. A special attention is paid to the choice of physically relevant inlet boundary conditions for the case of channel closing. Three types of the inlet boundary conditions are considered. Beside the classical Dirichlet and the do-nothing boundary conditions also a generalized boundary condition motivated by the penalization prescription of the Dirichlet boundary condition is applied. The fluid flow...

On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity

Bedřich Sousedík, Howard C. Elman, Kookjin Lee, Randy Price (2022)

Applications of Mathematics

We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates...

On Synge-type angle condition for d -simplices

Antti Hannukainen, Sergey Korotov, Michal Křížek (2017)

Applications of Mathematics

The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in d that degenerate in some way.

Currently displaying 441 – 460 of 1111