Displaying 401 – 420 of 1111

Showing per page

On semiregular families of triangulations and linear interpolation

Michal Křížek (1991)

Applications of Mathematics

We consider triangulations formed by triangular elements. For the standard linear interpolation operator π h we prove the interpolation order to be v - π h v 1 , p C h v 2 , p for p > 1 provided the corresponding family of triangulations is only semiregular. In such a case the well-known Zlámal’s condition upon the minimum angle need not be satisfied.

On simplicial red refinement in three and higher dimensions

Korotov, Sergey, Křížek, Michal (2013)

Applications of Mathematics 2013

We show that in dimensions higher than two, the popular "red refinement" technique, commonly used for simplicial mesh refinements and adaptivity in the finite element analysis and practice, never yields subsimplices which are all acute even for an acute father element as opposed to the two-dimensional case. In the three-dimensional case we prove that there exists only one tetrahedron that can be partitioned by red refinement into eight congruent subtetrahedra that are all similar to the original...

On solution to an optimal shape design problem in 3-dimensional linear magnetostatics

Dalibor Lukáš (2004)

Applications of Mathematics

In this paper we present theoretical, computational, and practical aspects concerning 3-dimensional shape optimization governed by linear magnetostatics. The state solution is approximated by the finite element method using Nédélec elements on tetrahedra. Concerning optimization, the shape controls the interface between the air and the ferromagnetic parts while the whole domain is fixed. We prove the existence of an optimal shape. Then we state a finite element approximation to the optimization...

On solutions of quasilinear wave equations with nonlinear damping terms

Jong Yeoul Park, Jeong Ja Bae (2000)

Czechoslovak Mathematical Journal

In this paper we consider the existence and asymptotic behavior of solutions of the following problem: u t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ u ( t , x ) + δ | u t ( t , x ) | p - 1 u t ( t , x ) = μ | u ( t , x ) | q - 1 u ( t , x ) , x Ω , t 0 , v t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ v ( t , x ) + δ | v t ( t , x ) | p - 1 v t ( t , x ) = μ | v ( t , x ) | q - 1 v ( t , x ) , x Ω , t 0 , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) , x Ω , v ( 0 , x ) = v 0 ( x ) , v t ( 0 , x ) = v 1 ( x ) , x Ω , u | Ω = v | Ω = 0 where q > 1 , p 1 , δ > 0 , α > 0 , β 0 , μ and Δ is the Laplacian in N .

On solving systems of differential algebraic equations

Marian Kwapisz (1992)

Applications of Mathematics

In the paper the comparison method is used to prove the convergence of the Picard iterations, the Seidel iterations, as well as some modifications of these methods applied to approximate solution of systems of differential algebraic equations. The both linear and nonlinear comparison equations are emloyed.

On Solving the Maximum Betweenness Problem Using Genetic Algorithms

Savić, Aleksandar (2009)

Serdica Journal of Computing

In this paper a genetic algorithm (GA) is applied on Maximum Betweennes Problem (MBP). The maximum of the objective function is obtained by finding a permutation which satisfies a maximal number of betweenness constraints. Every permutation considered is genetically coded with an integer representation. Standard operators are used in the GA. Instances in the experimental results are randomly generated. For smaller dimensions, optimal solutions of MBP are obtained by total enumeration. For those...

On some Boussinesq systems in two space dimensions: theory and numerical analysis

Vassilios A. Dougalis, Dimitrios E. Mitsotakis, Jean-Claude Saut (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

A three-parameter family of Boussinesq type systems in two space dimensions is considered. These systems approximate the three-dimensional Euler equations, and consist of three nonlinear dispersive wave equations that describe two-way propagation of long surface waves of small amplitude in ideal fluids over a horizontal bottom. For a subset of these systems it is proved that their Cauchy problem is locally well-posed in suitable Sobolev classes. Further, a class of these systems is discretized...

Currently displaying 401 – 420 of 1111