The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 461 –
480 of
9187
A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions is proved, error...
A modal synthesis method to solve the elastoacoustic vibration problem
is analyzed. A two-dimensional coupled fluid-solid system is considered;
the solid is described by displacement variables, whereas displacement
potential is used for the fluid. A particular modal synthesis leading to
a symmetric eigenvalue problem is introduced. Finite element discretizations
with Lagrangian elements are considered for solving the uncoupled problems.
Convergence for eigenvalues and eigenfunctions is proved,...
A simple model of biological evolution of community food webs is introduced. This model
is based on the niche model, which is known to generate model food webs that are very
similar to empirical food webs. The networks evolve by speciation and extinction.
Co-extinctions due to the loss of all prey species are found to play a major role in
determining the longterm shape of the food webs. The central aim is to design the model
such that the characteristic...
This paper deals with modeling the passive
behavior of skeletal muscle tissue including
certain microvibrations at the cell level. Our
approach combines a continuum mechanics model
with large deformation and incompressibility at
the macroscale with chains of coupled
nonlinear oscillators.
The model verifies that an externally applied
vibration at the appropriate frequency is able to synchronize
microvibrations in skeletal muscle cells.
From the numerical analysis point of view,
one faces...
In this paper we analyse an algorithm which is a modification of the so-called two-level algorithm with overcorrection, published in [2]. We illustrate the efficiency of this algorithm by a model example.
This paper is concerned with the problem of computing a small number of eigenvalues of large sparse generalized eigenvalue problems. The matrices arise from mixed finite element discretizations of time dependent equations modelling viscous incompressible flow. The eigenvalues of importance are those with smallest real part and are used to determine the linearized stability of steady states, and could be used in a scheme to detect Hopf bifurcations. We introduce a modified Cayley transform of the...
A modification of the limited-memory variable metric BNS method for large scale unconstrained optimization of the differentiable function is considered, which consists in corrections (based on the idea of conjugate directions) of difference vectors for better satisfaction of the previous quasi-Newton conditions. In comparison with [11], more previous iterations can be utilized here.
For quadratic objective functions, the improvement of convergence is the best
one in some sense, all stored corrected...
In this paper, we consider a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine the initial data from a noisy final data. Based on a series expression of the solution, a conditional stability for the initial data is given. Further, we propose a modified quasi-boundary value regularization method to deal with the backward problem and obtain two kinds of convergence rates by using an a priori regularization parameter...
In this paper, Runge-Kutta methods are discussed for numerical solutions of conservative systems. For the energy of conservative systems being as close to the initial energy as possible, a modified version of explicit Runge-Kutta methods is presented. The order of the modified Runge-Kutta method is the same as the standard Runge-Kutta method, but it is superior in energy-preserving to the standard one. Comparing the modified Runge-Kutta method with the standard Runge-Kutta method, numerical experiments...
Currently displaying 461 –
480 of
9187