Displaying 461 – 480 of 1948

Showing per page

A modified limited-memory BNS method for unconstrained minimization derived from the conjugate directions idea

Vlček, Jan, Lukšan, Ladislav (2015)

Programs and Algorithms of Numerical Mathematics

A modification of the limited-memory variable metric BNS method for large scale unconstrained optimization of the differentiable function f : N is considered, which consists in corrections (based on the idea of conjugate directions) of difference vectors for better satisfaction of the previous quasi-Newton conditions. In comparison with [11], more previous iterations can be utilized here. For quadratic objective functions, the improvement of convergence is the best one in some sense, all stored corrected...

A modified quasi-boundary value method for the backward time-fractional diffusion problem

Ting Wei, Jun-Gang Wang (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we consider a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine the initial data from a noisy final data. Based on a series expression of the solution, a conditional stability for the initial data is given. Further, we propose a modified quasi-boundary value regularization method to deal with the backward problem and obtain two kinds of convergence rates by using an a priori regularization parameter...

A modified version of explicit Runge-Kutta methods for energy-preserving

Guang-Da Hu (2014)

Kybernetika

In this paper, Runge-Kutta methods are discussed for numerical solutions of conservative systems. For the energy of conservative systems being as close to the initial energy as possible, a modified version of explicit Runge-Kutta methods is presented. The order of the modified Runge-Kutta method is the same as the standard Runge-Kutta method, but it is superior in energy-preserving to the standard one. Comparing the modified Runge-Kutta method with the standard Runge-Kutta method, numerical experiments...

A moving mesh fictitious domain approach for shape optimization problems

Raino A.E. Mäkinen, Tuomo Rossi, Jari Toivanen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A new numerical method based on fictitious domain methods for shape optimization problems governed by the Poisson equation is proposed. The basic idea is to combine the boundary variation technique, in which the mesh is moving during the optimization, and efficient fictitious domain preconditioning in the solution of the (adjoint) state equations. Neumann boundary value problems are solved using an algebraic fictitious domain method. A mixed formulation based on boundary Lagrange multipliers is...

Currently displaying 461 – 480 of 1948