Displaying 521 – 540 of 543

Showing per page

Two simple derivations of universal bounds for the C.B.S. inequality constant

Owe Axelsson, Radim Blaheta (2004)

Applications of Mathematics

Universal bounds for the constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality for piecewise linear-linear and piecewise quadratic-linear finite element spaces in 2 space dimensions are derived. The bounds hold for arbitrary shaped triangles, or equivalently, arbitrary matrix coefficients for both the scalar diffusion problems and the elasticity theory equations.

Two step extrapolation and optimum choice of relaxation factor of the extrapolated S.O.R. method

Jan Zítko (1988)

Aplikace matematiky

Limits of the extrapolation coefficients are rational functions of several poles with the largest moduli of the resolvent operator R ( λ , T ) = ( λ I - T ) - 1 and therefore good estimates of these poles could be calculated from these coefficients. The calculation is very easy for the case of two coefficients and its practical effect in finite dimensional space is considerable. The results are used for acceleration of S.O.R. method.

Two-grid finite-element schemes for the transient Navier-Stokes problem

Vivette Girault, Jacques-Louis Lions (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size H . In the second step, the problem is linearized by substituting into the non-linear term, the velocity 𝐮 H computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size h . This approach is motivated by the fact that,...

Two-grid finite-element schemes for the transient Navier-Stokes problem

Vivette Girault, Jacques-Louis Lions (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size H. In the second step, the problem is linearized by substituting into the non-linear term, the velocity uH computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size h. This approach is motivated by the fact that,...

Two-level stabilized nonconforming finite element method for the Stokes equations

Haiyan Su, Pengzhan Huang, Xinlong Feng (2013)

Applications of Mathematics

In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the N C P 1 - P 1 pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size H and a large stabilized Stokes...

Two-scale FEM for homogenization problems

Ana-Maria Matache, Christoph Schwab (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The convergence of a two-scale FEM for elliptic problems in divergence form with coefficients and geometries oscillating at length scale ε 1 is analyzed. Full elliptic regularity independent of ε is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE spaces which are able to resolve the ε scale of the solution with work independent of ε and without analytical homogenization are introduced. Robust in ε error estimates for the two-scale FE spaces are proved....

Two-scale FEM for homogenization problems

Ana-Maria Matache, Christoph Schwab (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The convergence of a two-scale FEM for elliptic problems in divergence form with coefficients and geometries oscillating at length scale ε << 1 is analyzed. Full elliptic regularity independent of ε is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE spaces which are able to resolve the ε scale of the solution with work independent of ε and without analytical homogenization are introduced. Robust in ε error estimates for the two-scale FE spaces...

Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions

Sergey Korotov (2007)

Applications of Mathematics

The paper is devoted to verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model consisting of a linear elliptic (reaction-diffusion) equation with a mixed Dirichlet/Neumann/Robin boundary condition is considered...

Two-sided bounds of eigenvalues of second- and fourth-order elliptic operators

Andrey Andreev, Milena Racheva (2014)

Applications of Mathematics

This article presents an idea in the finite element methods (FEMs) for obtaining two-sided bounds of exact eigenvalues. This approach is based on the combination of nonconforming methods giving lower bounds of the eigenvalues and a postprocessing technique using conforming finite elements. Our results hold for the second and fourth-order problems defined on two-dimensional domains. First, we list analytic and experimental results concerning triangular and rectangular nonconforming elements which...

Two-sided bounds of the discretization error for finite elements

Michal Křížek, Hans-Goerg Roos, Wei Chen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We derive an optimal lower bound of the interpolation error for linear finite elements on a bounded two-dimensional domain. Using the supercloseness between the linear interpolant of the true solution of an elliptic problem and its finite element solution on uniform partitions, we further obtain two-sided a priori bounds of the discretization error by means of the interpolation error. Two-sided bounds for bilinear finite elements are given as well. Numerical tests illustrate our theoretical analysis....

Currently displaying 521 – 540 of 543