The search session has expired. Please query the service again.

Displaying 541 – 560 of 569

Showing per page

Coupling of transport and diffusion models in linear transport theory

Guillaume Bal, Yvon Maday (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the coupling of two models for the propagation of particles in scattering media. The first model is a linear transport equation of Boltzmann type posed in the phase space (position and velocity). It accurately describes the physics but is very expensive to solve. The second model is a diffusion equation posed in the physical space. It is only valid in areas of high scattering, weak absorption, and smooth physical coefficients, but its numerical solution is...

Courbure discrète ponctuelle

Vincent Borrelli (2006/2007)

Séminaire de théorie spectrale et géométrie

Soient S une surface de l’espace euclidien 𝔼 3 et M un ensemble de triangles euclidiens formant une approximation linéaire par morceaux de S autour d’un point P S , la courbure discrète ponctuelle K d ( P ) au sommet P de M est, par définition, le quotient du défaut angulaire par la somme des aires des triangles ayant P comme sommet. Un problème naturel est d’estimer la différence entre cette courbure discrète K d ( S ) et la courbure lisse K ( P ) de S en P . Nous présentons dans cet article des résultats obtenus dans [4], [5],...

Cover pages

(2008)

Programs and Algorithms of Numerical Mathematics

Criterio para detectar outliers en poblaciones normales bivariantes.

Joaquón Muñoz García (1984)

Trabajos de Estadística e Investigación Operativa

Damos un procedimiento de detección de outliers para muestras procedentes de poblaciones normales bivariantes, que viene dado por el cuadrado de la distancia entre matrices de sumas de cuadrados y sumas de productos de observaciones muestrales, la cual se ha obtenido a partir de la forma métrica diferencial de Maas.

Cubic splines with minimal norm

Jiří Kobza (2002)

Applications of Mathematics

Natural cubic interpolatory splines are known to have a minimal L 2 -norm of its second derivative on the C 2 (or W 2 2 ) class of interpolants. We consider cubic splines which minimize some other norms (or functionals) on the class of interpolatory cubic splines only. The cases of classical cubic splines with defect one (interpolation of function values) and of Hermite C 1 splines (interpolation of function values and first derivatives) with spline knots different from the points of interpolation are discussed....

Curriculum vita of Prof. Vasil Atanasov Popov

Ivanov, Kamen, Petrushev, Pencho (2002)

Serdica Mathematical Journal

Our primary goal in this preamble is to highlight the best of Vasil Popov’s mathematical achievements and ideas. V. Popov showed his extraordinary talent for mathematics in his early papers in the (typically Bulgarian) area of approximation in the Hausdorff metric. His results in this area are very well presented in the monograph of his advisor Bl. Sendov, “Hausdorff Approximation”.

Curvature and Flow in Digital Space

Atsushi Imiya (2013)

Actes des rencontres du CIRM

We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.

Currently displaying 541 – 560 of 569