Displaying 701 – 720 of 9149

Showing per page

A numerical method for solving inverse eigenvalue problems

Hua Dai (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Based on QR-like decomposition with column pivoting, a new and efficient numerical method for solving symmetric matrix inverse eigenvalue problems is proposed, which is suitable for both the distinct and multiple eigenvalue cases. A locally quadratic convergence analysis is given. Some numerical experiments are presented to illustrate our results.

A numerical method for the solution of the nonlinear observer problem

Rehák, Branislav (2021)

Programs and Algorithms of Numerical Mathematics

The central part in the process of solving the observer problem for nonlinear systems is to find a solution of a partial differential equation of first order. The original method proposed to solve this equation used expansions into Taylor polynomials, however, it suffers from rather restrictive assumptions while the approach proposed here allows to generalize these requirements. Its characteristic feature is that it is based on the application of the Finite Element Method. An illustrating example...

A numerical method of fitting a multiparameter nonlinear function to experimental data in the L 1 norm

Jaromír Jakeš (1988)

Aplikace matematiky

A numerical method of fitting a multiparameter function, non-linear in the parameters which are to be estimated, to the experimental data in the L 1 norm (i.e., by minimizing the sum of absolute values of errors of the experimental data) has been developed. This method starts with the least squares solution for the function and then minimizes the expression i ( x i 2 + a 2 ) 1 / 2 , where x i is the error of the i -th experimental datum, starting with an a comparable with the root-mean-square error of the least squares solution...

A numerical minimization scheme for the complex Helmholtz equation

Russell B. Richins, David C. Dobson (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method and illustrate...

A numerical minimization scheme for the complex Helmholtz equation

Russell B. Richins, David C. Dobson (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method and illustrate...

A numerical perspective on Hartree−Fock−Bogoliubov theory

Mathieu Lewin, Séverine Paul (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The method of choice for describing attractive quantum systems is Hartree−Fock−Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of pairing effects, the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree−Fock−Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan)...

A numerical scheme for the quantum Boltzmann equation with stiff collision terms

Francis Filbet, Jingwei Hu, Shi Jin (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann equation. To define the quantum Maxwellian...

A numerical scheme for the quantum Boltzmann equation with stiff collision terms⋆

Francis Filbet, Jingwei Hu, Shi Jin (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann...

Currently displaying 701 – 720 of 9149