On the mathematical and numerical study of non-viscous axially symmetric channel flows
In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is notably...
We consider a heat equation with a non-linear right-hand side which depends on certain Volterra-type functionals. We study the problem of existence and convergence for the method of lines by means of semi-discrete inverse formulae.
We propose a weak formulation for the binormal curvature flow of curves in . This formulation is sufficiently broad to consider integral currents as initial data, and sufficiently strong for the weak-strong uniqueness property to hold, as long as self-intersections do not occur. We also prove a global existence theorem in that framework.