Displaying 61 – 80 of 1948

Showing per page

A compactness result for a second-order variational discrete model

Andrea Braides, Anneliese Defranceschi, Enrico Vitali (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower...

A compactness result for a second-order variational discrete model

Andrea Braides, Anneliese Defranceschi, Enrico Vitali (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions...

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel walls. Néel...

A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations

Michal Béreš (2020)

Applications of Mathematics

We examine different approaches to an efficient solution of the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with different, uncertain coefficients in apriori known subdomains. The solution of the SG system of equations is usually a very challenging task. A relatively new approach to the solution of the SG matrix equations is the reduced basis (RB) solver, which looks for a low-rank representation of the solution. The construction of the RB is usually done iteratively...

A comparison of automatic histogram constructions

Laurie Davies, Ursula Gather, Dan Nordman, Henrike Weinert (2009)

ESAIM: Probability and Statistics

Even for a well-trained statistician the construction of a histogram for a given real-valued data set is a difficult problem. It is even more difficult to construct a fully automatic procedure which specifies the number and widths of the bins in a satisfactory manner for a wide range of data sets. In this paper we compare several histogram construction procedures by means of a simulation study. The study includes plug-in methods, cross-validation, penalized maximum likelihood and the taut string...

A comparison of cointegration tests

Petr Mariel (1996)

Applications of Mathematics

In this paper some of the cointegration tests applied to a single equation are compared. Many of the existent cointegration tests are simply extensions of the unit root tests applied to the residuals of the cointegrating regression and the habitual H 0 is no cointegration. However, some non residual-based tests and some tests of the opposite null hypothesis have recently appeared in literature. Monte Carlo simulations have been used for the power comparison of the nine selected tests ( A D F , Z ^ α , Z ^ t , D H S ,...

A comparison of coupled and uncoupled solvers for the cardiac Bidomain model

P. Colli Franzone, L. F. Pavarino, S. Scacchi (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this work is to compare a new uncoupled solver for the cardiac Bidomain model with a usual coupled solver. The Bidomain model describes the bioelectric activity of the cardiac tissue and consists of a system of a non-linear parabolic reaction-diffusion partial differential equation (PDE) and an elliptic linear PDE. This system models at macroscopic level the evolution of the transmembrane and extracellular electric potentials of the anisotropic cardiac tissue. The evolution equation is...

A comparison of deterministic and Bayesian inverse with application in micromechanics

Radim Blaheta, Michal Béreš, Simona Domesová, Pengzhi Pan (2018)

Applications of Mathematics

The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities...

A comparison of dual Lagrange multiplier spaces for Mortar finite element discretizations

Barbara I. Wohlmuth (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient iterative...

A Comparison of Dual Lagrange Multiplier Spaces for Mortar Finite Element Discretizations

Barbara I. Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient iterative...

A comparison of some a posteriori error estimates for fourth order problems

Segeth, Karel (2010)

Programs and Algorithms of Numerical Mathematics

A lot of papers and books analyze analytical a posteriori error estimates from the point of view of robustness, guaranteed upper bounds, global efficiency, etc. At the same time, adaptive finite element methods have acquired the principal position among algorithms for solving differential problems in many physical and technical applications. In this survey contribution, we present and compare, from the viewpoint of adaptive computation, several recently published error estimation procedures for...

Currently displaying 61 – 80 of 1948