Displaying 1001 – 1020 of 1956

Showing per page

A strongly nonlinear problem arising in glaciology

Jacques Colinge, Jacques Rappaz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The computation of glacier movements leads to a system of nonlinear partial differential equations. The existence and uniqueness of a weak solution is established by using the calculus of variations. A discretization by the finite element method is done. The solution of the discrete problem is proved to be convergent to the exact solution. A first simple numerical algorithm is proposed and its convergence numerically studied.

A study of Galerkin method for the heat convection equations

Polina Vinogradova, Anatoli Zarubin (2012)

Applications of Mathematics

The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained.

A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations

Blanca Ayuso de Dios, Ivan Georgiev, Johannes Kraus, Ludmil Zikatanov (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed...

A Superconvergence result for mixed finite element approximations of the eigenvalue problem

Qun Lin, Hehu Xie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM: M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic...

A Superconvergence result for mixed finite element approximations of the eigenvalue problem∗

Qun Lin, Hehu Xie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM: M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic...

A survey on wavelet methods for (geo) applications.

Willi Freeden, Thorsten Maier, Steffen Zimmermann (2003)

Revista Matemática Complutense

Wavelets originated in 1980's for the analysis of (seismic) signals and have seen an explosion of applications. However, almost all the material is based on wavelets over Euclidean spaces. This paper deals with an approach to the theory and algorithmic aspects of wavelets in a general separable Hilbert space framework. As examples Legendre wavelets on the interval [-1,+1] and scalar and vector spherical wavelets on the unit sphere 'Omega' are discussed in more detail.

Currently displaying 1001 – 1020 of 1956