The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 981 –
1000 of
1956
In this work we consider a stabilized Lagrange multiplier method in order to
approximate the Coulomb frictional contact model in linear elastostatics. The
particularity of the method is that no discrete inf-sup condition is needed. We
study the existence and the uniqueness of solution of the discrete problem.
We outline a solution method for mixed finite element discretizations based on dissecting the problem into three separate steps. The first handles the inhomogeneous constraint, the second solves the flux variable from the homogeneous problem, whereas the third step, adjoint to the first, finally gives the Lagrangian multiplier. We concentrate on aspects involved in the first and third step mainly, and advertise a multi-level method that allows for a stable computation of the intermediate and final...
Method for numerical solution of Volterra integral equations, based on the O.I.M. methods, is suggested. It is known that the class of O.I.M. methods includes -stable methods of arbitrary high order of asymptotic accuracy. In part 5, it is proved that these methods generate methods for numerical solution of Volterra equations which are also -stable and of an arbitrarily high order. There is one advantage of the methods. Namely, they need no matrix inversion in the course of their numerical realization....
We propose a new reduced basis element-cum-component mode synthesis approach for parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library of interoperable parametrized reference components relevant to some family of problems; in the Online stage we instantiate and connect reference components (at ports) to rapidly form and query parametric systems. The method is based on static condensation at the interdomain level, a conforming eigenfunction “port”...
We propose a simple numerical method for capturing the steady state solution of hyperbolic systems with geometrical source terms. We use the interface value, rather than the cell-averages, for the source terms that balance the nonlinear convection at the cell interface, allowing the numerical capturing of the steady state with a formal high order accuracy. This method applies to Godunov or Roe type upwind methods but requires no modification of the Riemann solver. Numerical experiments on scalar...
We propose a simple numerical method for capturing the
steady state solution of hyperbolic systems with geometrical
source terms. We use
the interface value, rather than the cell-averages,
for the source terms that balance the nonlinear convection
at the cell interface, allowing the numerical capturing of the steady
state with a formal high order accuracy. This method applies to Godunov
or Roe type upwind methods but
requires no modification of the Riemann solver.
Numerical experiments on scalar...
The dynamics of dendritic growth of a crystal in an undercooled melt is
determined by macroscopic diffusion-convection of heat and by capillary forces
acting on the nanometer scale of the solid-liquid interface width.
Its modelling is useful for instance in processing techniques based on casting.
The phase-field method is widely used to study evolution of such microstructural phase transformations on
a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau
equation...
Currently displaying 981 –
1000 of
1956