A Uniform Scheme for the Singularly Perturbed Riccati Equation.
This paper studies the exact controllability of a finite dimensional system obtained by discretizing in space and time the linear 1-D wave system with a boundary control at one extreme. It is known that usual schemes obtained with finite difference or finite element methods are not uniformly controllable with respect to the discretization parameters and . We introduce an implicit finite difference scheme which differs from the usual centered one by additional terms of order and . Using a discrete...
This paper studies the exact controllability of a finite dimensional system obtained by discretizing in space and time the linear 1-D wave system with a boundary control at one extreme. It is known that usual schemes obtained with finite difference or finite element methods are not uniformly controllable with respect to the discretization parameters h and Δt. We introduce an implicit finite difference scheme which differs from the usual centered one by additional terms of order h2 and Δt2. Using...
We provide a local as well as a semilocal convergence analysis for Newton's method using unifying hypotheses on twice Fréchet-differentiable operators in a Banach space setting. Our approach extends the applicability of Newton's method. Numerical examples are also provided.
An alternative approach for the analysis and the numerical approximation of ODEs, using a variational framework, is presented. It is based on the natural and elementary idea of minimizing the residual of the differential equation measured in a usual Lp norm. Typical existence results for Cauchy problems can thus be recovered, and finer sets of assumptions for existence are made explicit. We treat, in particular, the cases of an explicit ODE and a differential inclusion. This approach also allows...
In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem. Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide a short overview...
In this paper we propose a solution of the Lambertian shape-from-shading (SFS) problem by designing a new mathematical framework based on the notion of viscosity solution. The power of our approach is twofolds: (1) it defines a notion of weak solutions (in the viscosity sense) which does not necessarily require boundary data. Moreover, it allows to characterize the viscosity solutions by their “minimums”; and (2) it unifies the works of [Rouy and Tourin, SIAM J. Numer. Anal.29 (1992) 867–884],...