Displaying 1301 – 1320 of 9149

Showing per page

Altman's methods revisited

C. Roland, B. Beckermann, C. Brezinski (2004)

Applicationes Mathematicae

We discuss two different methods of Altman for solving systems of linear equations. These methods can be considered as Krylov subspace type methods for solving a projected counterpart of the original system. We discuss the link to classical Krylov subspace methods, and give some theoretical and numerical results on their convergence behavior.

A-monotone nonlinear relaxed cocoercive variational inclusions

Ram Verma (2007)

Open Mathematics

Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.

An a posteriori error analysis for dynamic viscoelastic problems

J. R. Fernández, D. Santamarina (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, a dynamic viscoelastic problem is numerically studied. The variational problem is written in terms of the velocity field and it leads to a parabolic linear variational equation. A fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize time derivatives. An a priori error estimates result is recalled, from which the linear convergence is derived under suitable regularity conditions. Then, an a posteriori...

An a posteriori error analysis for dynamic viscoelastic problems

J. R. Fernández, D. Santamarina (2011)

ESAIM: Mathematical Modelling and Numerical Analysis


In this paper, a dynamic viscoelastic problem is numerically studied. The variational problem is written in terms of the velocity field and it leads to a parabolic linear variational equation. A fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize time derivatives. An a priori error estimates result is recalled, from which the linear convergence is derived under suitable regularity conditions. Then, an a posteriori error...

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Kieweg, Yuri Iliash, Ronald H. W. Hoppe, Michael Hintermüller (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Hintermüller, Ronald H.W. Hoppe, Yuri Iliash, Michael Kieweg (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...

Currently displaying 1301 – 1320 of 9149