The search session has expired. Please query the service again.

Displaying 1761 – 1780 of 9172

Showing per page

Approximate solutions of matrix differential equations.

Lucas Jódar Sánchez, A. Hervás, D. García Sala (1986)

Stochastica

A method for solving second order matrix differential equations avoiding the increase of the dimension of the problem is presented. Explicit approximate solutions and an error bound of them in terms of data are given.

Approximated maximum likelihood estimation of parameters of discrete stable family

Lenka Slámová, Lev B. Klebanov (2014)

Kybernetika

In this article we propose a method of parameters estimation for the class of discrete stable laws. Discrete stable distributions form a discrete analogy to classical stable distributions and share many interesting properties with them such as heavy tails and skewness. Similarly as stable laws discrete stable distributions are defined through characteristic function and do not posses a probability mass function in closed form. This inhibits the use of classical estimation methods such as maximum...

Approximating the MaxMin and MinMax Area Triangulations using Angular Constraints

Mark Keil, J, Vassilev, Tzvetalin (2010)

Serdica Journal of Computing

* A preliminary version of this paper was presented at XI Encuentros de Geometr´ia Computacional, Santander, Spain, June 2005.We consider sets of points in the two-dimensional Euclidean plane. For a planar point set in general position, i.e. no three points collinear, a triangulation is a maximal set of non-intersecting straight line segments with vertices in the given points. These segments, called edges, subdivide the convex hull of the set into triangular regions called faces or simply triangles. We...

Approximation and asymptotics of eigenvalues of unbounded self-adjoint Jacobi matrices acting in l 2 by the use of finite submatrices

Maria Malejki (2010)

Open Mathematics

We consider the problem of approximation of eigenvalues of a self-adjoint operator J defined by a Jacobi matrix in the Hilbert space l 2(ℕ) by eigenvalues of principal finite submatrices of an infinite Jacobi matrix that defines this operator. We assume the operator J is bounded from below with compact resolvent. In our research we estimate the asymptotics (with n → ∞) of the joint error of approximation for the eigenvalues, numbered from 1 to N; of J by the eigenvalues of the finite submatrix J...

Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods

Shanghui Jia, Hehu Xie, Xiaobo Yin, Shaoqin Gao (2009)

Applications of Mathematics

In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, Q 1 rot and E Q 1 rot . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.

Approximation and numerical realization of 3D contact problems with given friction and a coefficient of friction depending on the solution

Jaroslav Haslinger, Tomáš Ligurský (2009)

Applications of Mathematics

The paper presents the analysis, approximation and numerical realization of 3D contact problems for an elastic body unilaterally supported by a rigid half space taking into account friction on the common surface. Friction obeys the simplest Tresca model (a slip bound is given a priori) but with a coefficient of friction which depends on a solution. It is shown that a solution exists for a large class of and is unique provided that is Lipschitz continuous with a sufficiently small modulus of...

Approximation and numerical solution of contact problems with friction

Jaroslav Haslinger, Miroslav Tvrdý (1983)

Aplikace matematiky

The present paper deals with numerical solution of the contact problem with given friction. By a suitable choice of multipliers the whole problem is transformed to that of finding a saddle-point of the Lagrangian function on a certain convex set K × Λ . The approximation of this saddle-point is defined, the convergence is proved and the rate of convergence established. For the numerical realization Uzawa’s algorithm is used. Some examples are given in the conclusion.

Currently displaying 1761 – 1780 of 9172