The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form , . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
We consider one-dimensional stochastic differential equations
in the particular case of diffusion coefficient functions of the form
|x|α, α ∈ [1/2,1). In that case, we study the rate of convergence of a
symmetrized version of the Euler scheme. This symmetrized version is
easy to simulate on a computer.
We prove its strong convergence and obtain the same rate of
convergence as when the coefficients are Lipschitz.
This paper is concerned with the problem of simulation of , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain : namely, we consider the case where the boundary is killing, or where it is instantaneously reflecting in an oblique direction. Given discretization times equally spaced on the interval , we propose new discretization schemes: they are fully implementable and provide a weak error of order under some conditions. The construction...
This paper is concerned with the problem of simulation of (Xt)0≤t≤T, the
solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain
D: namely, we consider the case where the boundary ∂D is killing, or where it is instantaneously
reflecting in an oblique direction. Given N discretization times equally spaced on the interval [0,T],
we propose new discretization schemes: they are fully implementable and provide a weak error of order
N-1 under some conditions....
We study convergence in law for the Euler and Euler-Peano schemes for stochastic differential equations reflecting on the boundary of a general convex domain. We assume that the coefficients are measurable and continuous almost everywhere with respect to the Lebesgue measure. The proofs are based on new estimates of Krylov's type for the approximations considered.
In this note we propose an exact simulation algorithm for the solution of (1)d X t = d W t + b̅ ( X t ) d t, X 0 = x, where b̅is a smooth real function except at point 0 where b̅(0 + ) ≠ b̅(0 −) . The main idea is to sample an exact skeleton of Xusing an algorithm deduced from the convergence of the solutions of the skew perturbed equation (2)d X t β = d W t + b̅ ( X t β ) d t + β d L t 0 ( X β ) , X 0 = x towardsX solution of (1) as β ≠ 0 tends to 0. In this note, we show that this convergence...
We study a free energy computation procedure, introduced in
[Darve and Pohorille,
J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot,
J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time
behavior of a nonlinear stochastic
differential equation. This nonlinearity comes from a conditional
expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to
this equation has been proved
in [Lelièvre et al.,
Nonlinearity21 (2008) 1155–1181],...
In this paper, we propose a numerical method to solve stochastic elliptic interface problems with random interfaces. Shape calculus is first employed to derive the shape-Taylor expansion in the framework of the asymptotic perturbation approach. Given the mean field and the two-point correlation function of the random interface, we can thus quantify the mean field and the variance of the random solution in terms of certain orders of the perturbation amplitude by solving a deterministic elliptic interface...
We consider an initial and Dirichlet boundary value problem for
a fourth-order linear stochastic parabolic equation, in one space
dimension, forced by an additive space-time white noise.
Discretizing the space-time white noise a modelling error is
introduced and a regularized fourth-order linear stochastic
parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized
problem are constructed by using, for discretization in space, a
Galerkin finite element method...
The assessment of vibration characteristics in slender engineering structures, influenced by both deterministic harmonic and stochastic excitation, poses a challenging problem. Due to its complexity, transverse vibration of the structure (relative to the wind direction) is typically modelled using the single-degree-of-freedom van der Pol-type equation. Determining the response probability density function comprises solving the Fokker-Planck equation, a task that generally necessitates the use of...
We analyze the regularity of random entropy solutions to scalar hyperbolic conservation laws with random initial data. We prove regularity theorems for statistics of random entropy solutions like expectation, variance, space-time correlation functions and polynomial moments such as gPC coefficients. We show how regularity of such moments (statistical and polynomial chaos) of random entropy solutions depends on the regularity of the distribution law of the random shock location of the initial data....
For a stationary Markov process the detailed balance condition is equivalent to the time-reversibility of the process. For stochastic differential equations (SDE’s), the time discretization of numerical schemes usually destroys the time-reversibility property. Despite an extensive literature on the numerical analysis for SDE’s, their stability properties, strong and/or weak error estimates, large deviations and infinite-time estimates, no quantitative results are known on the lack of reversibility...
We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale...
The paper deals with a filter design for nonlinear continuous stochastic systems with discrete-time measurements. The general recursive solution is given by the Fokker–Planck equation (FPE) and by the Bayesian rule. The stress is laid on the computation of the predictive conditional probability density function from the FPE. The solution of the FPE and its integration into the estimation algorithm is the cornerstone for the whole recursive computation. A new usable numerical scheme for the FPE is...
In this paper we study different algorithms for backward
stochastic differential equations (BSDE in short) basing on random
walk framework for 1-dimensional Brownian motion. Implicit and
explicit schemes for both BSDE and reflected BSDE are introduced.
Then we prove the convergence of different algorithms and present
simulation results for different types of BSDEs.
In this paper we study different algorithms for backward
stochastic differential equations (BSDE in short) basing on random
walk framework for 1-dimensional Brownian motion. Implicit and
explicit schemes for both BSDE and reflected BSDE are introduced.
Then we prove the convergence of different algorithms and present
simulation results for different types of BSDEs.
Parallel replica dynamics is a method for accelerating the computation of processes characterized by a sequence of infrequent events. In this work, the processes are governed by the overdamped Langevin equation. Such processes spend much of their time about the minima of the underlying potential, occasionally transitioning into different basins of attraction. The essential idea of parallel replica dynamics is that the exit distribution from a given well for a single process can be approximated by...
Currently displaying 21 –
40 of
68