The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
146
The paper is devoted to the problem of verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model embracing nonlinear elliptic variational problems is considered in this work. Based on functional type estimates developed...
In this paper we derive a posteriori error estimates for the
heat equation. The time discretization
strategy is based on a θ-method and the mesh used for each
time-slab is independent of the mesh used for the previous
time-slab. The novelty of this paper is an upper bound for the
error caused by the coarsening of the mesh used for computing the
solution in the previous time-slab. The technique applied for
deriving this upper bound is independent of the problem and can be
generalized to other time...
The paper deals with some mixed finite element methods on a class of anisotropic meshes based on tetrahedra and prismatic (pentahedral) elements. Anisotropic local interpolation error estimates are derived in some anisotropic weighted Sobolev spaces. As particular applications, the numerical approximation by mixed methods of the Laplace equation in domains with edges is investigated where anisotropic finite element meshes are appropriate. Optimal error estimates are obtained using some anisotropic...
The paper deals with some mixed finite element methods on a class
of anisotropic meshes based on tetrahedra and prismatic (pentahedral)
elements. Anisotropic local
interpolation error estimates are derived in some anisotropic weighted Sobolev
spaces. As particular
applications, the numerical approximation by mixed methods of the Laplace equation
in domains
with edges is investigated where anisotropic finite
element meshes are appropriate. Optimal error estimates are obtained using
some anisotropic...
Numerical experiments in J. Maubach: Local bisection refinement and optimal order algebraic multilevel preconditioners, PRISM-97 conference Proceedings, 1977, 121–136 indicated that the refinement with the use of local bisections presented in J. Maubach: Local bisection refinement for -simplicial grids generated by reflections, SIAM J. Sci. Comput. 16 (1995), 210–227 leads to highly locally refined computational 2-meshes which can be very efficiently load-balanced with the use of a space-filling...
We present a sparse grid/hyperbolic cross discretization for many-particle problems.
It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization.
Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived
that, in the best case, result in complexities and error estimates which are independent of the number of particles.
Furthermore...
The magnetization of a ferromagnetic sample solves a non-convex variational problem, where its relaxation by convexifying the energy density resolves relevant macroscopic information. The numerical analysis of the relaxed model has to deal with a constrained convex but degenerated, nonlocal energy functional in mixed formulation for magnetic potential and magnetization . In [C. Carstensen and A. Prohl, Numer. Math. 90 (2001) 65–99], the conforming -element in spatial dimensions is shown to...
The magnetization of a ferromagnetic sample solves a
non-convex variational problem, where its relaxation by convexifying
the energy density resolves relevant
macroscopic information.
The numerical analysis of the relaxed model
has to deal with a constrained convex
but degenerated, nonlocal energy functional in mixed formulation for
magnetic potential u and magnetization m.
In [C. Carstensen and A. Prohl, Numer. Math.90
(2001) 65–99], the conforming P1 - (P0)d-element in d=2,3 spatial
dimensions...
The numerical modeling of the fully developed Poiseuille flow of a newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is based on the...
The numerical modeling of the fully developed Poiseuille flow
of a Newtonian fluid in a square section with
slip yield boundary condition at the wall is presented.
The stick regions in outer corners and the slip region in the center
of the pipe faces are exhibited.
Numerical computations cover the complete range of the dimensionless number describing
the slip yield effect, from a full slip to a full stick flow regime.
The resolution of variational inequalities
describing the flow is based on the...
We give a constructive proof that for any bounded domain of the class there exists a strongly regular family of boundary-fitted tetrahedral meshes. We adopt a refinement technique introduced by Křížek and modify it so that a refined mesh is again boundary-fitted. An alternative regularity criterion based on similarity with the Sommerville tetrahedron is used and shown to be equivalent to other standard criteria. The sequence of regularities during the refinement process is estimated from below...
We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519–549]. They are appropriately graded near singular corners and edges of the polyhedron.
We prove the discrete compactness property of the edge elements of any order on a class
of anisotropically refined meshes on polyhedral domains. The meshes, made up of
tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl.
Sci. 21 (1998) 519–549]. They are appropriately graded near
singular corners and edges of the polyhedron.
A reference triangular quadratic Lagrange finite element consists of a right triangle with unit legs , , a local space of quadratic polynomials on and of parameters relating the values in the vertices and midpoints of sides of to every function from . Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping . We explicitly describe such invertible isoparametric mappings for which the images , of the segments , are segments,...
In this paper we summarize three recent results in computational geometry, that were motivated by applications in mathematical modelling of fluids. The cornerstone of all three results is the genuine construction developed by D. Sommerville already in 1923. We show Sommerville tetrahedra can be effectively used as an underlying mesh with additional properties and also can help us prove a result on boundary-fitted meshes. Finally we demonstrate the universality of the Sommerville's construction by...
The paper is devoted to verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model consisting of a linear elliptic (reaction-diffusion) equation with a mixed Dirichlet/Neumann/Robin boundary condition is considered...
Currently displaying 121 –
140 of
146