The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This article defines and presents the mathematical analysis of a new class of models from the theory of inelastic deformations of metals. This new class, containing so called convex composite models, enlarges the class containing monotone models of gradient type defined in [1]. This paper starts to establish the existence theory for models from this new class; we restrict our investigations to the coercive and linear self-controlling case.
A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.
In this paper we investigate the equivalence of the sequential
weak lower semicontinuity of the total energy functional and the quasiconvexity of the
stored energy function of the nonlinear micropolar elasticity. Based on techniques of Acerbi and Fusco [Arch. Rational Mech. Anal.86 (1984) 125–145] we extend the result from Tambača and Velčić [ESAIM: COCV (2008) DOI: 10.1051/cocv:2008065] for energies that
satisfy the growth of order p≥ 1. This result is the main
step towards the general existence...
We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent...
Currently displaying 21 –
28 of
28