The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 8 of 8

Showing per page

Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier–Stokes par une technique de projection incrémentale

Jean-Luc Guermond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Navier–Stokes equations are approximated by means of a fractional step, Chorin–Temam projection method; the time derivative is approximated by a three-level backward finite difference, whereas the approximation in space is performed by a Galerkin technique. It is shown that the proposed scheme yields an error of 𝒪 ( δ t 2 + h l + 1 ) for the velocity in the norm of l2(L2(Ω)d), where l ≥ 1 is the polynomial degree of the velocity approximation. It is also shown that the splitting error of projection schemes based...

Uniqueness of weak solutions of the Navier-Stokes equations

Sadek Gala (2008)

Applications of Mathematics

Consider the Navier-Stokes equation with the initial data a L σ 2 ( d ) . Let u and v be two weak solutions with the same initial value a . If u satisfies the usual energy inequality and if v L 2 ( ( 0 , T ) ; X ˙ 1 ( d ) d ) where X ˙ 1 ( d ) is the multiplier space, then we have u = v .

Currently displaying 1 – 8 of 8

Page 1