The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present a mathematical description of wetting and drying stone pores, where the resulting mathematical model contains hysteresis operators. We describe these hysteresis operators and present a numerical solution for a simplified problem.
In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
A new approximation scheme is presented for the mathematical model of convection-diffusion and adsorption. The method is based on the relaxation method and the method of characteristics. We prove the convergence of the method and present some numerical experiments in 1D. The results can be applied to the model of contaminant transport in porous media with multi-site, equilibrium and non-equilibrium type of adsorption.
A new approximation scheme is presented for the mathematical model of
convection-diffusion and adsorption. The method is based on the
relaxation method and the method of characteristics. We prove the
convergence of the method and present some numerical experiments in 1D.
The results can be applied to the model of contaminant transport
in porous media with multi-site, equilibrium and non-equilibrium type of
adsorption.
We consider the dynamics of an interface given by two incompressible fluids with different characteristics evolving by Darcy’s law. This scenario is known as the Muskat problem, being in 2D mathematically analogous to the two-phase Hele-Shaw cell. The purpose of this paper is to outline recent results on local existence, weak solutions, maximum principles and global existence.
We consider a model coupling the Darcy equations in a porous medium with the Navier-Stokes equations in the cracks, for which the coupling is provided by the pressure's continuity on the interface. We discretize the coupled problem by the spectral element method combined with a nonoverlapping domain decomposition method. We prove the existence of solution for the discrete problem and establish an error estimation. We conclude with some numerical tests confirming the results of our analysis.
Currently displaying 1 –
20 of
30