Propagation and local-decay properties for long-range scattering of quantum three-body systems
In this paper, we prove propagation estimates for a massive Dirac equation in flat spacetime. This allows us to construct the asymptotic velocity operator and to analyse its spectrum. Eventually, using this new information, we are able to obtain complete scattering results; that is to say we prove the existence and the asymptotic completeness of the Dollard modified wave operators.
In these lecture notes we describe the propagation of singularities of tempered distributional solutions of , where is a many-body hamiltonian , , , and is not a threshold of , under the assumption that the inter-particle (e.g. two-body) interactions are real-valued polyhomogeneous symbols of order (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...
In this paper I discuss quantum systems whose Hamiltonians are non-Hermitian but whose energy levels are all real and positive. Such theories are required to be symmetric under , but not symmetric under and separately. Recently, quantum mechanical systems having such properties have been investigated in detail. In this paper I extend the results to quantum field theories. Among the systems that I discuss are and theories. These theories all have unexpected and remarkable properties. I discuss...
We prove that a pure state on a -algebras or a JB algebra is a unique extension of some pure state on a singly generated subalgebra if and only if its left kernel has a countable approximative unit. In particular, any pure state on a separable JB algebra is uniquely determined by some singly generated subalgebra. By contrast, only normal pure states on JBW algebras are determined by singly generated subalgebras, which provides a new characterization of normal pure states. As an application we contribute...