Some rigorous results on the Pauli-Fierz model of classical electrodynamics
The author presents a simple method (by using the standard theory of connections on principle bundles) of -decomposition of the physical equations written in terms of differential forms on a 4-dimensional spacetime of general relativity, with respect to a general observer. Finally, the author suggests possible applications of such a decomposition to the Maxwell theory.
We present a sparse grid/hyperbolic cross discretization for many-particle problems. It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization. Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived that, in the best case, result in complexities and error estimates which are independent of the number of particles. Furthermore...
We present a new method for establishing the ‘‘gap” property for finitely generated subgroups of , providing an elementary solution of Ruziewicz problem on as well as giving many new examples of finitely generated subgroups of with an explicit gap. The distribution of the eigenvalues of the elements of the group ring in the -th irreducible representation of is also studied. Numerical experiments indicate that for a generic (in measure) element of , the “unfolded” consecutive spacings...
The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). We consider all three cases.
The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). ...
We describe the spectra of Jacobi operators J with some irregular entries. We divide ℝ into three “spectral regions” for J and using the subordinacy method and asymptotic methods based on some particular discrete versions of Levinson’s theorem we prove the absolute continuity in the first region and the pure pointness in the second. In the third region no information is given by the above methods, and we call it the “uncertainty region”. As an illustration, we introduce and analyse the OP family...
We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of , and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we...