Supersymmetry transformations for delta potentials.
By using a supersymmetric gaussian representation, we transform the averaged Green's function for random walks in random potentials into a 2-point correlation function of a corresponding lattice field theory. We study the resulting lattice field theory using the Witten laplacian formulation. We obtain the asymptotics for the directional Lyapunov exponents.
We show that any sequence of mutually orthogonal pure states on a JB algebra A such that forms an almost discrete sequence in the relative topology induced by the primitive ideal space of A admits a sequence consisting of positive, norm one, elements of A with pairwise orthogonal supports which is supporting for in the sense of for all n. Moreover, if A is separable then can be taken such that is uniquely determined by the biorthogonality condition . Consequences of this result improving...
Dans cette article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.
Dans cet article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.
We study the properties of the Wigner transform for arbitrary functions in L2 or for hermitian kernels like the so-called density matrices. And we introduce some limits of these transforms for sequences of functions in L2, limits that correspond to the semi-classical limit in Quantum Mechanics. The measures we obtain in this way, that we call Wigner measures, have various mathematical properties that we establish. In particular, we prove they satisfy, in linear situations (Schrödinger equations)...
Let be an open subset of the complex plane, and let denote a finite-dimensional complex simple Lie algebra. A. A. Belavin and V. G. Drinfel’d investigated non-degenerate meromorphic functions from into which are solutions of the classical Yang-Baxter equation [Funct. Anal. Appl. 16, 159-180 (1983; Zbl 0504.22016)]. They found that (up to equivalence) the solutions depend only on the difference of the two variables and that their set of poles forms a discrete (additive) subgroup of the...
The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of -valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.
We study the symmetric powers of four algebras: -oscillator algebra, -Weyl algebra, -Weyl algebra and . We provide explicit formulae as well as combinatorial interpretation for the normal coordinates of products of arbitrary elements in the above algebras.
The Hamiltonian for an extended Hubbard model with phonons as introduced by A. Montorsi and M. Rasetti is considered on a D-dimensional lattice. The symmetries of the model are studied in various cases. It is shown that for a certain choice of the parameters a superconducting holds as a true quantum symmetry, but only for D=1.