The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1001 –
1020 of
1377
This paper deals with the asymptotic behavior as of solutions to the forced Preisach oscillator equation , , where is a Preisach hysteresis operator, is a given function and is the time variable. We establish an explicit asymptotic relation between the Preisach measure and the function (or, in a more physical terminology, a balance condition between the hysteresis dissipation and the external forcing) which guarantees that every solution remains bounded for all times. Examples show...
We analyse the spectral phase diagram of Schrödinger operators on regular tree graphs, with the graph adjacency operator and a random potential given by random variables. The main result is a criterion for the emergence of absolutely continuous spectrum due to fluctuation-enabled resonances between distant sites. Using it we prove that for unbounded random potentials spectrum appears at arbitrarily weak disorder in an energy regime which extends beyond the spectrum of. Incorporating...
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...
This article discusses the numerical approximation of
time dependent Ginzburg-Landau equations. Optimal
error estimates which are robust with respect
to a large Ginzburg-Landau parameter are established for a
semi-discrete in time and a fully discrete approximation
scheme. The proofs rely on an asymptotic
expansion of the exact solution and a stability result
for degree-one Ginzburg-Landau vortices. The error bounds
prove that degree-one vortices can be approximated robustly
while unstable higher...
We perform a numerical study of the fluctuations of the rescaled hydrodynamic transverse
velocity field during the cooling state of a homogeneous granular gas. We are interested
in the role of Molecular Chaos for the amplitude of the hydrodynamic noise and its
relaxation in time. For this purpose we compare the results of Molecular Dynamics (MD,
deterministic dynamics) with those from Direct Simulation Monte Carlo (DSMC, random
process), where Molecular...
In this paper, a new concept of the Reactivity Trace Curve (RTC) for reactor power control is presented. The concept is demonstrated for a reactor model with one group of delayed neutrons, where the reactivity trace curve is simply a closed form exponential solution of the RTC-differential equation identifier. An extended reactor model of multigroup (six groups) of delayed neutrons is discussed for power control using the RTC-method which is based on numerical solution of the governing equation...
We present an R&D project on fuzzy-logic control applicatios tor the Belgian Nuclear Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK·CEN). The project started in 1995 and aimed at investigating the added value of fuzzy logic control for nuclear reactors. We first review some relevant literature on fuzzy logic control in nuclear reactors, then present the state-of-the-art of the BR1 project, with an understanding of the safety requirements for this real fuzzy-logic control application...
Through a Metropolis-like algorithm with single step computational cost of order one, we build a Markov chain that relaxes to the canonical Fermi statistics for k non-interacting particles among m energy levels. Uniformly over the temperature as well as the energy values and degeneracies of the energy levels we give an explicit upper bound with leading term km ln k for the mixing time of the dynamics. We obtain such construction and upper bound as a special case of a general result on (non-homogeneous)...
Consider the classical -dimensional Solid-On-Solid model above a hard wall on an box of . The model describes a crystal surface by assigning a non-negative integer height to each site in the box and 0 heights to its boundary. The probability of a surface configuration is proportional to , where is the inverse-temperature and sums the absolute values of height differences between neighboring sites. We give a full description of the shape of the SOS surface for low enough temperatures....
Attributing a positive value τx to each x∈ℤd, we investigate a nearest-neighbour random walk which is reversible for the measure with weights (τx), often known as “Bouchaud’s trap model.” We assume that these weights are independent, identically distributed and non-integrable random variables (with polynomial tail), and that d≥5. We obtain the quenched subdiffusive scaling limit of the model, the limit being the fractional kinetics process. We begin our proof by expressing the random walk as the...
We consider a variation of the standard Hastings–Levitov model HL(0), in which growth is anisotropic. Two natural scaling limits are established and we give precise descriptions of the effects of the anisotropy. We show that the limit shapes can be realised as Loewner hulls and that the evolution of harmonic measure on the cluster boundary can be described by the solution to a deterministic ordinary differential equation related to the Loewner equation. We also characterise the stochastic fluctuations...
Currently displaying 1001 –
1020 of
1377