The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Surface energies in a two-dimensional mass-spring model for crystals

Florian Theil (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study an atomistic pair potential-energy E(n)(y) that describes the elastic behavior of two-dimensional crystals with natoms where y 2 × n characterizes the particle positions. The main focus is the asymptotic analysis of the ground state energy asn tends to infinity. We show in a suitable scaling regime where the energy is essentially quadratic that the energy minimum of E(n) admits an asymptotic expansion involving fractional powers of n: min y E ( n ) ( y ) = n E bulk + n E surface + o ( n ) , n . The bulk energy densityEbulk is given by an explicit expression...

Surface energies in a two-dimensional mass-spring model for crystals

Florian Theil (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We study an atomistic pair potential-energy E(n)(y) that describes the elastic behavior of two-dimensional crystals with n atoms where y 2 × n characterizes the particle positions. The main focus is the asymptotic analysis of the ground state energy as n tends to infinity. We show in a suitable scaling regime where the energy is essentially quadratic that the energy minimum of E(n) admits an asymptotic expansion involving fractional powers of n: min y E ( n ) ( y ) = n E bulk + n E surface + o ( n ) , n . The bulk energy density Ebulk is given by an explicit expression...

Currently displaying 1 – 3 of 3

Page 1