Sur certaines solutions particulières transcendantes des équations d'Einstein
On étudie le comportement asymptotique des niveaux d’une fonction temps quasi-concave, définie sur un espace-temps globalement hyperbolique maximal plat de dimension trois, admettant une hypersurface de Cauchy de genre . On donne une réponse positive à une conjecture posée par Benedetti et Guadagnini dans [7]. Plus précisément, on montre que les niveaux d’une telle fonction temps convergent au sens de la topologie de Hausdorff-Gromov équivariante vers un arbre réel. On montre de plus que la limite...
Dynamics of a point-particle system interacting gravitationally according to the general theory of relativity can be analyzed within the canonical formalism of Arnowitt, Deser, and Misner. To describe the property of being a point particle one can employ Dirac delta distribution in the energy-momentum tensor of the system. We report some mathematical difficulties which arise in deriving the 3rd post-Newtonian Hamilton's function for such a system. We also offer ways to overcome partially these difficulties....
The most elegant definition of singularities in general relativity as b-boundary points, when applied to the closed Friedman world model, leads to the disastrous situation: both the initial and final singularities form the single point of the b-boundary which is not Hausdorff separated from the rest of space-time. We apply Alain Connes' method of non-commutative geometry, defined in terms of a C*-algebra, to this case. It turns out that both the initial and final singularities can be analysed as...
We show how the theory of -manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.
We investigate the mapping class groups of diffeomorphisms fixing a frame at a point for general classes of 3-manifolds. These groups form the equivalent to the groups of large gauge transformations in Yang-Mills theories. They are also isomorphic to the fundamental groups of the spaces of 3-metrics modulo diffeomorphisms, which are the analogues in General Relativity to gauge-orbit spaces in gauge theories.