The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 421 –
440 of
3923
By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established under...
Conjugate gradient methods are widely used for solving large-scale unconstrained optimization problems, because they do not need the storage of matrices. Based on the self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno (SSML-BFGS) method, new conjugate gradient algorithms CG-DESCENT and CGOPT have been proposed by W. Hager, H. Zhang (2005) and Y. Dai, C. Kou (2013), respectively. It is noted that the two conjugate gradient methods perform more efficiently than the SSML-BFGS method. Therefore,...
Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated. The one- and multi-dimensional cases are treated separately. Numerical examples illustrate the approach and as well as structural features of the solution.
Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated.
The one- and multi-dimensional cases are treated separately.
Numerical examples illustrate the approach and as well as structural features of the solution.
In this paper, we present a sensitivity result for quadratic second-order cone programming under the weak form of second-order sufficient condition. Based on this result, we analyze the local convergence of an SQP-type method for nonlinear second-order cone programming. The subproblems of this method at each iteration are quadratic second-order cone programming problems. Compared with the local convergence analysis done before, we do not need the assumption that the Hessian matrix of the Lagrangian...
Sensitivity analysis (with respect to the regularization parameter)
of the solution of a class of regularized state constrained
optimal control problems is performed. The theoretical results are
then used to establish an extrapolation-based numerical scheme for
solving the regularized problem for vanishing regularization
parameter. In this context, the extrapolation technique provides
excellent initializations along the sequence of reducing
regularization parameters. Finally, the favorable numerical
behavior...
We show how the use of a parallel between the ordinary (+, X) and the
(max, +) algebras, Maslov measures that exploit this parallel, and more
specifically their specialization to probabilities and
the corresponding cost measures of Quadrat, offer a completely parallel
treatment of stochastic and minimax control of disturbed nonlinear discrete
time systems with partial information. This paper is based upon, and
improves, the discrete time part of the earlier paper [9].
The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in a Euclidean space, may lead to slow convergence of the constructed sequence when that sequence enters some narrow “corridor” between two or more convex sets. A way to leave such corridor consists in taking a big step at different moments during the iteration, because in that way the monotoneous behaviour that is responsible for the slow convergence may be interrupted. In this...
We describe an algorithm for computing the value function for “all source, single destination” discrete-time nonlinear optimal control problems together with approximations of associated globally optimal control strategies. The method is based on a set oriented approach for the discretization of the problem in combination with graph-theoretic techniques. The central idea is that a discretization of phase space of the given problem leads to an (all source, single destination) shortest path problem...
We describe an algorithm for computing the value function for “all
source, single destination” discrete-time nonlinear optimal control
problems together with approximations of associated globally optimal
control strategies. The method is based on a set oriented approach
for the discretization of the problem in combination with
graph-theoretic techniques. The central idea is that a
discretization of phase space of the given problem leads to an (all
source, single destination) shortest path...
Editorial from the Editor-in-Chief regarding this case of plagiarismPhilippe Mahey 1 Introduction
Plagiarism
is a plague that any scientific publication in any discipline should fight and
eradicate all over the world. Unfortunately, if, on the one hand, the powerful
search engines available on the web have helped referees to identify most of
the cases, the increasing number of publications have on the other hand
facilitated that dubious practice and the number of cases have increased.
The case...
Currently displaying 421 –
440 of
3923