Displaying 101 – 120 of 333

Showing per page

Dynamics of Tuberculosis: The effect of Direct Observation Therapy Strategy (DOTS) in Nigeria

D. Okuonghae, A. Korobeinikov (2010)

Mathematical Modelling of Natural Phenomena

This paper presents mathematical models for tuberculosis and its dynamics under the implementation of the direct observation therapy strategy (DOTS) in Nigeria. The models establish conditions for the eradication of tuberculosis in Nigeria based on the fraction of detected infectious individuals placed under DOTS for treatment. Both numerical and qualitative analysis of the models were carried out and the effect of the fraction of detected cases of active TB on the various epidemiological classes...

Epidemiology of Dengue Fever: A Model with Temporary Cross-Immunity and Possible Secondary Infection Shows Bifurcations and Chaotic Behaviour in Wide Parameter Regions

Maíra Aguiar, Bob Kooi, Nico Stollenwerk (2008)

Mathematical Modelling of Natural Phenomena

Basic models suitable to explain the epidemiology of dengue fever have previously shown the possibility of deterministically chaotic attractors, which might explain the observed fluctuations found in empiric outbreak data. However, the region of bifurcations and chaos require strong enhanced infectivity on secondary infection, motivated by experimental findings of antibody-dependent-enhancement. Including temporary cross-immunity in such models, which is common knowledge among field researchers...

Free boundary problems arising in tumor models

Avner Friedman (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider several simple models of tumor growth, described by systems of PDEs, and describe results on existence of solutions and on their asymptotic behavior. The boundary of the tumor region is a free boundary. In §1 the model assumes three types of cells, proliferating, quiescent and necrotic, and the corresponding PDE system consists of elliptic, parabolic and hyperbolic equations. The model in §2 assumes that the tumor has only proliferating cells. Finally in §3 we consider a model for treatment...

Free Boundary Problems Associated with Multiscale Tumor Models

A. Friedman (2009)

Mathematical Modelling of Natural Phenomena

The present paper introduces a tumor model with two time scales, the time t during which the tumor grows and the cycle time of individual cells. The model also includes the effects of gene mutations on the population density of the tumor cells. The model is formulated as a free boundary problem for a coupled system of elliptic, parabolic and hyperbolic equations within the tumor region, with nonlinear and nonlocal terms. Existence and uniqueness theorems are proved, and properties of the free boundary...

Generalised filtering.

Friston, Karl, Stephan, Klaas, Li, Baojuan, Daunizeau, Jean (2010)

Mathematical Problems in Engineering

Global stability of steady solutions for a model in virus dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Global Stability of Steady Solutions for a Model in Virus Dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Hematologic Disorders and Bone Marrow–Peripheral Blood Dynamics

E. Afenya, S. Mundle (2010)

Mathematical Modelling of Natural Phenomena

Hematologic disorders such as the myelodysplastic syndromes (MDS) are discussed. The lingering controversies related to various diseases are highlighted. A simple biomathematical model of bone marrow - peripheral blood dynamics in the normal state is proposed and used to investigate cell behavior in normal hematopoiesis from a mathematical viewpoint. Analysis of the steady state and properties of the model are used to make postulations about the...

Currently displaying 101 – 120 of 333